Comparing Methodologies for Stomatal Analyses in the Context of Elevated Modern CO2

被引:3
|
作者
Stein, Rebekah A. [1 ]
Sheldon, Nathan D. [2 ]
Smith, Selena Y. [2 ]
机构
[1] Quinnipiac Univ, Dept Chem & Phys Sci, Hamden, CT 06518 USA
[2] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA
来源
LIFE-BASEL | 2024年 / 14卷 / 01期
关键词
stomata; carbon dioxide; photosynthesis; paleobarometer; paleoclimate; atmosphere; ATMOSPHERIC CO2; GENOME SIZE; CLIMATE-CHANGE; WATER-USE; DENSITY; LEAF; PREDICTOR; RESPONSES; NUMBERS; GINKGO;
D O I
10.3390/life14010078
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Leaf stomata facilitate the exchange of water and CO2 during photosynthetic gas exchange. The shape, size, and density of leaf pores have not been constant over geologic time, and each morphological trait has potentially been impacted by changing environmental and climatic conditions, especially by changes in the concentration of atmospheric carbon dioxide. As such, stomatal parameters have been used in simple regressions to reconstruct ancient carbon dioxide, as well as incorporated into more complex gas-exchange models that also leverage plant carbon isotope ecology. Most of these proxy relationships are measured on chemically cleared leaves, although newer techniques such as creating stomatal impressions are being increasingly employed. Additionally, many of the proxy relationships use angiosperms with broad leaves, which have been increasingly abundant in the last 130 million years but are absent from the fossil record before this. We focus on the methodology to define stomatal parameters for paleo-CO2 studies using two separate methodologies (one corrosive, one non-destructive) to prepare leaves on both scale- and broad-leaves collected from herbaria with known global atmospheric CO2 levels. We find that the corrosive and non-corrosive methodologies give similar values for stomatal density, but that measurements of stomatal sizes, particularly guard cell width (GCW), for the two methodologies are not comparable. Using those measurements to reconstruct CO2 via the gas exchange model, we found that reconstructed CO2 based on stomatal impressions (due to inaccurate measurements in GCW) far exceeded measured CO2 for modern plants. This bias was observed in both coniferous (scale-shaped) and angiosperm (broad) leaves. Thus, we advise that applications of gas exchange models use cleared leaves rather than impressions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Elevated CO2 and Reactive Oxygen Species in Stomatal Closure
    Ma, Xiaonan
    Bai, Ling
    PLANTS-BASEL, 2021, 10 (02): : 1 - 12
  • [2] Molecular basis of variation in stomatal responsiveness to elevated CO2
    Johansson, Karin S. L.
    El-Soda, Mohamed
    Nilsson, Anders K.
    Andersson, Mats X.
    Fredin, Johan Uddling
    AGRICULTURE AND CLIMATE CHANGE - ADAPTING CROPS TO INCREASED UNCERTAINTY (AGRI 2015), 2015, 29 : 210 - 210
  • [3] Regenerating temperate forests under elevated CO2 and nitrogen deposition:: comparing biochemical and stomatal limitation of photosynthesis
    Bauer, GA
    Berntson, GM
    Bazzaz, FA
    NEW PHYTOLOGIST, 2001, 152 (02) : 249 - 266
  • [4] EFFECT OF ELEVATED CO2 ON STOMATAL SIZE AND DISTRIBUTION IN PERENNIAL RYEGRASS
    RYLE, GJA
    STANLEY, J
    ANNALS OF BOTANY, 1992, 69 (06) : 563 - 565
  • [5] Stomatal conductance in mature deciduous forest trees exposed to elevated CO2
    Keel, Sonja Gisela
    Pepin, Steeve
    Leuzinger, Sebastian
    Koerner, Christian
    TREES-STRUCTURE AND FUNCTION, 2007, 21 (02): : 151 - 159
  • [6] ABA-mediated modulation of elevated CO2 on stomatal response to drought
    Li, Shenglan
    Li, Xiangnan
    Wei, Zhenhua
    Liu, Fulai
    CURRENT OPINION IN PLANT BIOLOGY, 2020, 56 : 174 - 180
  • [7] Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2
    Warren, Jeffrey M.
    Poetzelsberger, Elisabeth
    Wullschleger, Stan D.
    Thornton, Peter E.
    Hasenauer, Hubert
    Norby, Richard J.
    ECOHYDROLOGY, 2011, 4 (02) : 196 - 210
  • [8] Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa
    Poole, I
    Lawson, T
    Weyers, JDB
    Raven, JA
    NEW PHYTOLOGIST, 2000, 145 (03) : 511 - 521
  • [9] Plant stomatal closure improves aphid feeding under elevated CO2
    Sun, Yucheng
    Guo, Huijuan
    Yuan, Liang
    Wei, Jianing
    Zhang, Wenhao
    Ge, Feng
    GLOBAL CHANGE BIOLOGY, 2015, 21 (07) : 2739 - 2748
  • [10] STOMATAL CHARACTERISTICS OF 4 NATIVE HERBS FOLLOWING EXPOSURE TO ELEVATED CO2
    FERRIS, R
    TAYLOR, G
    ANNALS OF BOTANY, 1994, 73 (04) : 447 - 453