Polynomiality of factorizations in reflection groups
被引:1
|
作者:
Polak, Elzbieta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USA
San Francisco State Univ, Dept Math, San Francisco, CA 94132 USAUniv Texas Austin, Dept Math, Austin, TX 78712 USA
Polak, Elzbieta
[1
,2
]
Ross, Dustin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USA
San Francisco State Univ, Dept Math, San Francisco, CA 94132 USAUniv Texas Austin, Dept Math, Austin, TX 78712 USA
Ross, Dustin
[1
,2
]
机构:
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
We study the number of ways of factoring elements in the complex reflection groups G(r, s, n) as products of reflections. We prove a result that compares factorization numbers in G(r, s, n) to those in the symmetric group S-n, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in G(r, s, n).