Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis

被引:8
|
作者
Yang, Lu [1 ,2 ]
Ng, Yan Er [3 ]
Sun, Haipeng [4 ]
Li, Ying [5 ]
Chini, Lucas C. S. [3 ]
Lebrasseur, Nathan K. [3 ,6 ]
Chen, Jun [1 ,2 ]
Zhang, Xu [3 ,7 ]
机构
[1] Mayo Clin, Dept Quantitat Hlth Sci, Div Computat Biol, Rochester, MN 55905 USA
[2] Mayo Clin, Ctr Individualized Med, Rochester, MN 55905 USA
[3] Mayo Clin, Robert & Arlene Kogod Ctr Aging, Rochester, MN 55905 USA
[4] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA
[5] Mayo Clin, Dept Quantitat Hlth Sci, Jacksonville, FL 32224 USA
[6] Mayo Clin, Dept Phys Med & Rehabil, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
Single-cell RNA-sequencing; Cell type annotation; Cell type markers; scMayoMap; scMayoMapDatabase; ATLAS;
D O I
10.1186/s12915-023-01728-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Single-cell RNA-sequencing (scRNA-seq) has become a widely used tool for both basic and translational biomedical research. In scRNA-seq data analysis, cell type annotation is an essential but challenging step. In the past few years, several annotation tools have been developed. These methods require either labeled training/reference datasets, which are not always available, or a list of predefined cell subset markers, which are subject to biases. Thus, a user-friendly and precise annotation tool is still critically needed.Results We curated a comprehensive cell marker database named scMayoMapDatabase and developed a companion R package scMayoMap, an easy-to-use single-cell annotation tool, to provide fast and accurate cell type annotation. The effectiveness of scMayoMap was demonstrated in 48 independent scRNA-seq datasets across different platforms and tissues. Additionally, the scMayoMapDatabase can be integrated with other tools and further improve their performance.Conclusions scMayoMap and scMayoMapDatabase will help investigators to define the cell types in their scRNA-seq data in a streamlined and user-friendly way.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Automatic Cell Type Annotation Using Marker Genes for Single-Cell RNA Sequencing Data
    Chen, Yu
    Zhang, Shuqin
    BIOMOLECULES, 2022, 12 (10)
  • [22] Clustering and classification methods for single-cell RNA-sequencing data
    Qi, Ren
    Ma, Anjun
    Ma, Qin
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1196 - 1208
  • [23] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Zhang, Yun
    Aevermann, Brian
    Gala, Rohan
    Scheuermann, Richard H.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [24] Cell type matching in single-cell RNA-sequencing data using FR-Match
    Yun Zhang
    Brian Aevermann
    Rohan Gala
    Richard H. Scheuermann
    Scientific Reports, 12 (1)
  • [25] Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
    Zhao, Xinlei
    Wu, Shuang
    Fang, Nan
    Sun, Xiao
    Fan, Jue
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1581 - 1595
  • [26] Design and computational analysis of single-cell RNA-sequencing experiments
    Bacher, Rhonda
    Kendziorski, Christina
    GENOME BIOLOGY, 2016, 17
  • [27] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [28] Design and computational analysis of single-cell RNA-sequencing experiments
    Rhonda Bacher
    Christina Kendziorski
    Genome Biology, 17
  • [29] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [30] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)