Finite volume element method for nonlinear elliptic equations on quadrilateral meshes

被引:3
|
作者
Chen, Guofang [1 ,2 ]
Lv, Junliang [1 ]
Zhang, Xinye [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Jilin Prov Inst Educ, Coll Minor Educ, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear elliptic equations; Finite volume element method; Error estimate; GENERALIZED DIFFERENCE-METHODS; COVOLUME METHODS; RECTANGULAR GRIDS; SUPERCONVERGENCE; SCHEMES;
D O I
10.1016/j.camwa.2023.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we solve a second-order nonlinear elliptic equation by using the finite volume element method, and give the rigorous error estimates. Firstly, the computational domain is divided into general convex quadrilateral meshes. We choose the isoparametric bilinear element space as the trial function space and the piecewise constant function space as the test function space, and construct the corresponding finite volume element scheme. Secondly, on the h(2)-parallelogram mesh, the boundedness and coercivity of bilinear form are proved. Using the Brouwer fixed point theorem, we give the existence and uniqueness of numerical solution. Thirdly, we derive the estimates of parallel to(del(u-u(h))parallel to with t >= 2 and parallel to u-u(h)parallel to(0) under certain regularity assumptions. At last, we carry out numerical experiments on quadrilateral meshes and calculate the convergence orders in H-1 and L-2 norms, which are consistent with our theoretical results.
引用
收藏
页码:154 / 168
页数:15
相关论文
共 50 条
  • [41] Topological improvement procedures for quadrilateral finite element meshes
    S. A. Canann
    S. N. Muthukrishnan
    R. K. Phillips
    Engineering with Computers, 1998, 14 : 168 - 177
  • [42] Topological improvement procedures for quadrilateral finite element meshes
    Canann, SA
    Muthukrishnan, SN
    Phillips, RK
    ENGINEERING WITH COMPUTERS, 1998, 14 (02) : 168 - 177
  • [43] FINITE ELEMENT ERROR EXPANSION FOR NONUNIFORM QUADRILATERAL MESHES
    林群
    Systems Science and Mathematical Sciences, 1989, (03) : 275 - 282
  • [44] A FINITE ELEMENT METHOD FOR NONLINEAR ELLIPTIC PROBLEMS
    Lakkis, Omar
    Pryer, Tristan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04): : A2025 - A2045
  • [45] L2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes
    Junliang Lv
    Yonghai Li
    Advances in Computational Mathematics, 2012, 37 : 393 - 416
  • [46] A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes
    Gao, Yanni
    Yuan, Guangwei
    Wang, Shuai
    Hang, Xudeng
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
  • [47] P1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations
    Xinlong Feng
    Rongfei Li
    Yinnian He
    Demin Liu
    Journal of Scientific Computing, 2012, 52 : 519 - 545
  • [48] A Modified Rotated-Q1 Finite Element for the Stokes Equations on Quadrilateral and Hexahedral Meshes
    Xu, Liwei
    Xu, Xuejun
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [49] P 1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations
    Feng, Xinlong
    Li, Rongfei
    He, Yinnian
    Liu, Demin
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (03) : 519 - 545
  • [50] Two-grid finite volume element method for linear and nonlinear elliptic problems
    Bi, Chunjia
    Ginting, Victor
    NUMERISCHE MATHEMATIK, 2007, 108 (02) : 177 - 198