Supermodularity and valid inequalities for quadratic optimization with indicators
被引:6
|
作者:
Atamturk, Alper
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
Atamturk, Alper
[1
]
Gomez, Andres
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Viterbi Sch Engn, Dept Ind & Syst Engn, Los Angeles, CA 90089 USAUniv Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
Gomez, Andres
[2
]
机构:
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[2] Univ Southern Calif, Viterbi Sch Engn, Dept Ind & Syst Engn, Los Angeles, CA 90089 USA
We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the epigraph of the quadratic can be obtained from inequalities for the underlying supermodular set function by lifting them into nonlinear inequalities in the original space of variables. Explicit forms of the convex-hull description are given, both in the original space of variables and in an extended formulation via conic quadratic-representable inequalities, along with a polynomial separation algorithm. Computational experiments indicate that the lifted supermodular inequalities in conic quadratic form are quite effective in reducing the integrality gap for quadratic optimization with indicators.
机构:
Eotvos Lorand Univ, Dept Operat Res, MTA ELTE Egervary Res Grp, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Operat Res, MTA ELTE Egervary Res Grp, H-1117 Budapest, Hungary
Berczi, Kristof
Frank, Andras
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Operat Res, MTA ELTE Egervary Res Grp, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Operat Res, MTA ELTE Egervary Res Grp, H-1117 Budapest, Hungary