A high-strength concrete resistant to elevated temperatures using steel slag aggregates

被引:12
|
作者
Hajiaghamemar, Mohammadreza [1 ]
Mostofinejad, Davood [2 ]
Bahmani, Hadi [3 ]
机构
[1] Isfahan Univ Technol IUT, Dept Civil Engn, Esfahan 84156683111, Iran
[2] Isfahan Univ Technol IUT, Dept Civil Engn, Esfahan 8, Iran
[3] Isfahan Univ Technol IUT, Dept Civil Engn, Esfahan 841561083111, Iran
关键词
high temperatures; high-strength concrete; polypropylene fibers; refractory cement; steel fibers; steel slag; FIBER-REINFORCED CONCRETE; REACTIVE POWDER CONCRETE; RESIDUAL MECHANICAL-PROPERTIES; POLYPROPYLENE FIBERS; FLEXURAL BEHAVIOR; MICROSTRUCTURE; EXPOSURE; FIRE;
D O I
10.1002/suco.202200806
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates high-strength concrete (HSC) exposed to high temperatures using the full replacement of natural aggregates with steel slag. Polypropylene (PP) and steel fibers are used as reinforcements, and the effects of calcium aluminate cement and ordinary cement on the mechanical properties of this concrete are compared. A total of 81 cylindrical specimens of 100 x 200 mm and 81 prism specimens of 100 x 100 x 350 mm were made using different amounts of cementitious materials (cement and silica fume) of 450, 500, and 550 kg/m(3), with constant water-to-cementitious materials ratio of 0.28. The present results revealed that the HSC made with steel slag aggregates and calcium aluminate cement reinforced with steel fibers, had the greatest compressive strength of 84 and 50 MPa at temperatures of 20? and 800?, respectively; and flexural strength of 7.9 and 4.5 MPa, respectively, at the same temperatures. Similar HSC specimens constructed with ordinary cement, on the other hand, performed better at 400?. Moreover, the flexural strength of the samples placed at temperatures of 400? and 800? decreased by 28% and 48%, respectively, compared to the specimens at 20?. Compared to specimens comprised of polypropylene fibers, the fracture energy and displacement of HSC with steel slag reinforced with steel fibers subjected to high temperatures were increased by approximately 100% and 60%, respectively.
引用
收藏
页码:3162 / 3177
页数:16
相关论文
共 50 条
  • [21] Normal and High-Strength Lightweight Self-Compacting Concrete Incorporating Perlite, Scoria, and Polystyrene Aggregates at Elevated Temperatures
    Aslani, Farhad
    Ma, Guowei
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (12)
  • [22] Flexural Performance of Composite Beams Using High-Strength Steel and High-Strength Concrete
    Hao Du
    Xiamin Hu
    Danrong Shi
    Wei Xue
    International Journal of Steel Structures, 2022, 22 : 27 - 41
  • [23] Flexural Performance of Composite Beams Using High-Strength Steel and High-Strength Concrete
    Du, Hao
    Hu, Xiamin
    Shi, Danrong
    Xue, Wei
    INTERNATIONAL JOURNAL OF STEEL STRUCTURES, 2022, 22 (01) : 27 - 41
  • [24] The effects of strain rate on the effective yield strength of high-strength steel at elevated temperatures
    Kimura, Kei
    Onogi, Takeshi
    Ozaki, Fuminobu
    JOURNAL OF STRUCTURAL FIRE ENGINEERING, 2024, 15 (01) : 24 - 49
  • [25] The influence of super-fine steel slag on the properties of high-strength concrete
    Feng Jingjing
    Wang Xiaoqing
    Wang Shanshan
    APPLIED MECHANICS AND MATERIALS II, PTS 1 AND 2, 2014, 477-478 : 941 - 944
  • [26] CHARACTERISTICS OF LIGHTWEIGHT AGGREGATES FOR HIGH-STRENGTH CONCRETE
    ZHANG, MH
    GJORV, OE
    ACI MATERIALS JOURNAL, 1991, 88 (02) : 150 - 158
  • [27] High-Strength Concrete Containing Recycled Coarse Aggregate Subjected to Elevated Temperatures
    Pliya, P.
    Cree, D.
    Hajiloo, H.
    Beaucour, A. -L.
    Green, M. F.
    Noumowe, A.
    FIRE TECHNOLOGY, 2019, 55 (05) : 1477 - 1494
  • [28] Mechanical behavior of high-strength concrete incorporating seashell powder at elevated temperatures
    Ashan, Muhammad Hamza
    Siddique, Muhammad Shahid
    Farooq, Syed Hassan
    Usman, Muhammad
    Ul Aleem, Muhammad Ashar
    Hussain, Manzoor
    Hanif, Asad
    JOURNAL OF BUILDING ENGINEERING, 2022, 50
  • [29] High-Strength Concrete Containing Recycled Coarse Aggregate Subjected to Elevated Temperatures
    P. Pliya
    D. Cree
    H. Hajiloo
    A.-L. Beaucour
    M. F. Green
    A. Noumowé
    Fire Technology, 2019, 55 : 1477 - 1494
  • [30] Behavior of SSFA high-strength concrete at ambient and after exposure to elevated temperatures
    Huang, Z. C.
    Liu, J. J.
    Ren, F. M.
    Cui, J.
    Song, Z.
    Lu, D. H.
    Lai, M. H.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20