Analysis of different artificial neural networks for Bitcoin price prediction

被引:6
|
作者
Aghashahi, Mahsa [1 ]
Bamdad, Shahrooz [1 ]
机构
[1] Islamic Azad Univ, Dept Ind Engn, South Tehran Branch, Tehran, Iran
关键词
Bitcoin; Digital currency market; Artificial neural networks; Data analytics; MODEL;
D O I
10.1080/17509653.2022.2032442
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Predicting the future price of the currency has always been considered one of the most challenging issues. In this paper, we utilize different artificial neural networks (ANNs), including Feedforwardnet, Fitnet, and Cascade networks, and predict the future price of Bitcoin. This paper discusses how a combination of technical attributes, like price-related and lagged features, as inputs of the neural networks, are used to raise the prediction capabilities that directly impact into the final profitability. For empirical analysis, this paper uses the data of the Bitcoin price for a period of 9 months (1.1.2018 - 30.9.2018) available on www.coindesk.com. Using a ten-fold cross-validation method, this paper finds the optimal number of hidden neurons for different train functions in each ANN based on error measures, including mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). Then, the Bitcoin price is predicted, and results are compared based on the amount of R to find out which ANN leads to a better prediction. Finally, this paper concludes that the Fitnet network with trainlm function and 30 hidden neurons outweighs the others. This paper assesses the models' performance and how specific setups produce principled and stable predictions for beneficial trading.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [21] Bitcoin Price Prediction and NFT Generator Based on Sentiment Analysis
    Lade, Mitali
    Welekar, Rashmi
    Dadiyala, Charanjeet
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 223 - 229
  • [22] Transformer Models for Bitcoin Price Prediction
    Mai, Tai
    Cavazza, Marc
    Prendinger, Helmut
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, FAIML 2024, 2024, : 236 - 241
  • [23] The Use of Artificial Neural Networks in the Analysis and Prediction of Stock Prices
    de Oliveira, Fagner Andrade
    Zarate, Luis Enrique
    Reis, Marcos de Azevedo
    Nobre, Cristiane Neri
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 2151 - 2155
  • [24] Artificial Neural Networks for Surface Ozone Prediction: Models and Analysis
    Faris, Hossam
    Alkasassbeh, Mouhammd
    Rodan, Ali
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2014, 23 (02): : 341 - 348
  • [25] Riverflow Prediction with Artificial Neural Networks
    Jayawardena, A. W.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 : 463 - 471
  • [26] ARTIFICIAL NEURAL NETWORKS FOR TOXICITY PREDICTION
    Partridge, M.
    Buettner, F.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S107 - S107
  • [27] Artificial neural networks in outcome prediction
    Lundin, J
    ANNALES CHIRURGIAE ET GYNAECOLOGIAE, 1998, 87 (02) : 128 - 130
  • [28] Artificial neural networks for streamflow prediction
    Dolling, OR
    Varas, EA
    JOURNAL OF HYDRAULIC RESEARCH, 2002, 40 (05) : 547 - 554
  • [29] Allergenicity prediction by artificial neural networks
    Dimitrov, Ivan
    Naneva, Lyudmila
    Bangov, Ivan
    Doytchinova, Irini
    JOURNAL OF CHEMOMETRICS, 2014, 28 (04) : 282 - 286
  • [30] Prediction intervals for artificial neural networks
    Hwang, JTG
    Ding, AA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 748 - 757