A novel deep unsupervised learning-based framework for optimization of truss structures

被引:31
|
作者
Mai, Hau T. [1 ,2 ]
Lieu, Qui X. [3 ,4 ]
Kang, Joowon [5 ]
Lee, Jaehong [1 ]
机构
[1] Sejong Univ, Deep Learning Architectural Res Ctr, 209 Neungdong Ro, Seoul 05006, South Korea
[2] Ind Univ Ho Chi Minh City, Fac Mech Engn, 12 Nguyen Van Bao St,Ward 4, Ho Chi Minh City 70000, Vietnam
[3] Ho Chi Minh City Univ Technol HCMUT, Fac Civil Engn, 268 Ly Thuong Kiet St,Ward 14,Dist 10, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ Ho Chi Minh City VNU HCM, Linh Trung Ward, Ho Chi Minh City, Vietnam
[5] Yeungnam Univ, Sch Architecture, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Unsupervised learning; Deep neural network; Loss function; Truss optimization; DIFFERENTIAL EVOLUTION ALGORITHM; NEURAL-NETWORK; DESIGN OPTIMIZATION; SIZE OPTIMIZATION; CONSTRAINTS; LAYOUT; SHAPE;
D O I
10.1007/s00366-022-01636-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, an efficient deep unsupervised learning (DUL)-based framework is proposed to directly perform the design optimization of truss structures under multiple constraints for the first time. Herein, the members' cross-sectional areas are parameterized using a deep neural network (DNN) with the middle spatial coordinates of truss elements as input data. The parameters of the network, including weights and biases, are regarded as decision variables of the structural optimization problem, instead of the member's cross-sectional areas as those of traditional optimization algorithms. A new loss function of the network model is constructed with the aim of minimizing the total structure weight so that all constraints of the optimization problem via unsupervised learning are satisfied. To achieve the optimal parameters, the proposed model is trained to minimize the loss function by a combination of the standard gradient optimizer and backpropagation algorithm. As soon as the learning process ends, the optimum weight of truss structures is indicated without utilizing any other time-consuming metaheuristic algorithms. Several illustrative examples are investigated to demonstrate the efficiency of the proposed framework in requiring much lower computational cost against other conventional methods, yet still providing high-quality optimal solutions.
引用
收藏
页码:2585 / 2608
页数:24
相关论文
共 50 条
  • [21] A teaching learning based optimization for truss structures with frequency constraints
    Dede, Tayfun
    Togan, Vedat
    STRUCTURAL ENGINEERING AND MECHANICS, 2015, 53 (04) : 833 - 845
  • [22] DRLnet: Deep Difference Representation Learning Network and An Unsupervised Optimization Framework
    Zhang, Puzhao
    Gong, Maoguo
    Zhang, Hui
    Liu, Jia
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3413 - 3419
  • [23] A Novel Deep Learning-based Whale Optimization Algorithm for Prediction of Breast Cancer
    Rana, Poonam
    Gupta, Pradeep Kumar
    Sharma, Vineet
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2021, 64
  • [24] Unsupervised Online Learning in Deep Learning-Based Massive MIMO CSI Feedback
    Cui, Yiming
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Han, Shuangfeng
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 2086 - 2090
  • [25] Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles
    Faigl, Jan
    Vana, Petr
    Penicka, Robert
    Saska, Martin
    JOURNAL OF FIELD ROBOTICS, 2019, 36 (01) : 270 - 301
  • [26] A Deep Learning-Based Framework for Retinal Disease Classification
    Choudhary, Amit
    Ahlawat, Savita
    Urooj, Shabana
    Pathak, Nitish
    Lay-Ekuakille, Aime
    Sharma, Neelam
    HEALTHCARE, 2023, 11 (02)
  • [27] A Deep Reinforcement Learning-Based Framework for Content Caching
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [28] A deep learning-based framework for predicting pork preference
    Ko, Eunyoung
    Jeong, Kyungchang
    Oh, Hongseok
    Park, Yunhwan
    Choi, Jungseok
    Lee, Euijong
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [29] Deep Learning-Based Cellular Random Access Framework
    Jang, Han Seung
    Lee, Hoon
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7503 - 7518
  • [30] A deep learning-based framework for road traffic prediction
    Benarmas, Redouane Benabdallah
    Bey, Kadda Beghdad
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (05): : 6891 - 6916