Solutions of the Lippmann-Schwinger equation for confocal parabolic billiards

被引:0
|
作者
Ruiz-Biestro, Alberto [1 ]
Gutierrez-Vega, Julio C. [1 ]
机构
[1] Tecnol Monterrey, Photon & Math Opt Grp, Monterrey 64849, Mexico
关键词
ELECTROMAGNETIC-WAVES; SCATTERING; CYLINDER; DUALITY;
D O I
10.1103/PhysRevE.109.034203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present analytical and numerical solutions of the Lippmann-Schwinger equation for the scattered wave functions generated by confocal parabolic billiards and parabolic segments with various 3-type potential-strength functions. The analytical expressions are expressed as summations of products of parabolic cylinder functions Dm. We numerically investigate the resonances and tunneling in the confocal parabolic billiards by employing an accurate boundary wall method that provides a complete inside-outside picture. The criterion for discretizing the parabolic sides of the billiard is explained in detail. We discuss the phenomenon of transparency at certain eigenenergies.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Exact solution to the Lippmann-Schwinger equation for an elliptical billiard
    Maioli, Alan C.
    Schmidt, Alexandre G. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 111 : 51 - 62
  • [32] Lippmann-Schwinger equation approach to scattering in quantum wires
    Vargiamidis, V
    Valassiades, O
    Kyriakos, DS
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2003, 236 (03): : 597 - 613
  • [33] METHOD FOR LIPPMANN-SCHWINGER EQUATIONS
    SLOAN, IH
    ADHIKARI, SK
    NUCLEAR PHYSICS A, 1974, A235 (02) : 352 - 360
  • [34] Experimental study of the solutions of the Lippmann-Schwinger equation for an elliptical billiard with an intense laser beam
    Oliveira, L. S.
    Pereira, M. E.
    Balthazar, W. F.
    Schmidt, A. G. M.
    Huguenin, J. A. O.
    PHYSICS LETTERS A, 2024, 521
  • [35] REMARKS ON EXISTENCE OF SOLUTIONS OF 2-PARTICLE LIPPMANN-SCHWINGER EQUATION .2.
    SHASTRY, CS
    RAJAGOPAL, AK
    JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (10) : 2194 - +
  • [36] INTEGRATION OF THE LIPPMANN-SCHWINGER EQUATION WITH THE MONTE-CARLO METHOD
    SALOMON, M
    PHYSICAL REVIEW A, 1983, 28 (06): : 3645 - 3647
  • [37] The Time-Domain Lippmann-Schwinger Equation and Convolution Quadrature
    Lechleiter, Armin
    Monk, Peter
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) : 517 - 540
  • [38] THE RELATIONSHIP BETWEEN VARIOUS METHODS OF SOLUTION OF THE LIPPMANN-SCHWINGER EQUATION
    KOPEC, S
    PHYSICA SCRIPTA, 1986, 34 (05): : 353 - 357
  • [39] APPLICATION OF THE INHOMOGENEOUS LIPPMANN-SCHWINGER EQUATION TO INVERSE SCATTERING PROBLEMS
    Giorgi, Giovanni
    Brignone, Massimo
    Aramini, Riccardo
    Piana, Michele
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (01) : 212 - 231
  • [40] PROPERTIES OF KERNEL OF A 3-BODY LIPPMANN-SCHWINGER EQUATION
    GLOCKLE, W
    HEISS, WD
    NUCLEAR PHYSICS A, 1968, A122 (02) : 343 - &