Global Boundedness in a Logarithmic Keller-Segel System

被引:0
|
作者
Liu, Jinyang [1 ,2 ]
Tian, Boping [1 ]
Wang, Deqi [2 ]
Tang, Jiaxin [2 ]
Wu, Yujin [3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Stat, Chengdu 610103, Peoples R China
[3] Zhejiang Sci Tech Univ, Sch Econ & Management, Hangzhou 310018, Peoples R China
关键词
chemotaxis model; energy functional; integral inequality; global uniform boundedness; PARABOLIC CHEMOTAXIS SYSTEM; WELL-POSEDNESS; BLOW-UP; SENSITIVITY;
D O I
10.3390/math11122743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction of the energy functional containing ?(O)|?|(4)/?(2) with v>0. It is noteworthy that the inequality used in the paper may be applied to study other chemotaxis systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Global Boundedness of the Fully Parabolic Keller-Segel System with Signal-Dependent Motilities
    Wang, Zhi-An
    Zheng, Jiashan
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [12] Unlimited growth in logarithmic Keller-Segel systems
    Winkler, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 : 74 - 97
  • [13] Global and exponential attractor of the repulsive Keller-Segel model with logarithmic sensitivity
    Chen, Lin
    Kong, Fanze
    Wang, Qi
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (04) : 599 - 617
  • [14] Global well-posedness of logarithmic Keller-Segel type systems
    Ahn, Jaewook
    Kang, Kyungkeun
    Lee, Jihoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 185 - 211
  • [15] Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity
    Li, Jingyu
    Li, Tong
    Wang, Zhi-An
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14): : 2819 - 2849
  • [16] Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Zhang, Yinle
    Zheng, Sining
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 15 - 20
  • [17] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2473 - 2484
  • [18] BOUNDEDNESS OF SOLUTIONS TO A FULLY PARABOLIC KELLER-SEGEL SYSTEM WITH NONLINEAR SENSITIVITY
    Yu, Hao
    Wang, Wei
    Zheng, Sining
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1635 - 1644
  • [19] Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source
    Wang, Yifu
    Liu, Ji
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 113 - 130
  • [20] BOUNDARY SPIKES OF A KELLER-SEGEL CHEMOTAXIS SYSTEM WITH SATURATED LOGARITHMIC SENSITIVITY
    Wang, Qi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (04): : 1231 - 1250