Some identities involving Bernoulli, Euler and degenerate Bernoulli numbers and their applications

被引:5
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kim, Hye Kyung [3 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Daegu Catholic Univ, Dept Math Educ, Gyongsan 38430, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Volkenborn integral; fermionic p-adic integral; Euler numbers; Bernoulli numbers; degenerate Bernoulli numbers; random variables; POLYNOMIALS; Z(P);
D O I
10.1080/27690911.2023.2220873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper has two main objectives. Firstly, it explores the properties of hyperbolic cosine and hyperbolic sine functions by using Volkenborn and the fermionic p-adic integrals, respectively. It also investigates interesting identities involving Bernoulli and degenerate Bernoulli numbers from differential equations with their solutions. Secondly, it introduces a random variable whose mass function is given in terms of Euler polynomials and find some expressions for the expectation of the random variable.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Identities involving trigonometric functions and Bernoulli numbers
    Zhang, Wenpeng
    Lin, Xin
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 288 - 294
  • [32] Convolution Identities for New Numbers Including Euler and Bernoulli Numbers
    Aygunes, Aykut Ahmet
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [33] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [34] Identities for Bernoulli polynomials and Bernoulli numbers
    Alzer, Horst
    Kwong, Man Kam
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 521 - 529
  • [35] Identities for Bernoulli polynomials and Bernoulli numbers
    Horst Alzer
    Man Kam Kwong
    Archiv der Mathematik, 2014, 102 : 521 - 529
  • [36] Some congruences involving generalized Bernoulli numbers and Bernoulli polynomials
    Li, Ni
    Ma, Rong
    ACTA ARITHMETICA, 2024, 212 (01)
  • [37] Identities and congruences involving higher-order Euler-Bernoulli numbers and polynomials
    Liu, GD
    FIBONACCI QUARTERLY, 2001, 39 (03): : 279 - 284
  • [38] Several new identities involving Euler and Bernoulli polynomials
    Wang Xiaoying
    Zhang Wenpeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (01): : 101 - 108
  • [39] Some Identities for Euler and Bernoulli Polynomials and Their Zeros
    Kim, Taekyun
    Ryoo, Cheon Seoung
    AXIOMS, 2018, 7 (03)
  • [40] Some Identities Relating to Degenerate Bernoulli Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    FILOMAT, 2016, 30 (04) : 905 - 912