Fundamental limits and algorithms for sparse linear regression with sublinear sparsity

被引:0
|
作者
Truong, Lan V. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
Bayesian Inference; Approximate Message Passing; Replica Method; Inter-polation Method; SUPPORT RECOVERY; INFORMATION; CDMA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We establish exact asymptotic expressions for the normalized mutual information and min-imum mean-square-error (MMSE) of sparse linear regression in the sub-linear sparsity regime. Our result is achieved by a generalization of the adaptive interpolation method in Bayesian inference for linear regimes to sub-linear ones. A modification of the well-known approximate message passing algorithm to approach the MMSE fundamental limit is also proposed, and its state evolution is rigorously analysed. Our results show that the tra-ditional linear assumption between the signal dimension and number of observations in the replica and adaptive interpolation methods is not necessary for sparse signals. They also show how to modify the existing well-known AMP algorithms for linear regimes to sub-linear ones.
引用
收藏
页数:49
相关论文
共 50 条
  • [21] Optimal sparsity testing in linear regression model
    Carpentier, Alexandra
    Verzelen, Nicolas
    BERNOULLI, 2021, 27 (02) : 727 - 750
  • [22] Distributed Sparse Linear Regression
    Mateos, Gonzalo
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) : 5262 - 5276
  • [23] Scaled sparse linear regression
    Sun, Tingni
    Zhang, Cun-Hui
    BIOMETRIKA, 2012, 99 (04) : 879 - 898
  • [24] Linear and sublinear time algorithms for the basis of abelian groups
    Chen, Li
    Fu, Bin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (32) : 4110 - 4122
  • [25] SCALABLE ALGORITHMS FOR THE SPARSE RIDGE REGRESSION
    Xie, Weijun
    Deng, Xinwei
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) : 3359 - 3386
  • [26] Fundamental limits and improved algorithms for linear least-squares wireless position estimation
    Guvenc, Ismail
    Gezici, Sinan
    Sahinoglu, Zafer
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2012, 12 (12): : 1037 - 1052
  • [27] Comparison of l1-Norm SVR and Sparse Coding Algorithms for Linear Regression
    Zhang, Qingtian
    Hu, Xiaolin
    Zhang, Bo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (08) : 1828 - 1833
  • [28] Fundamental Limits of Distributed Linear Encoding
    Khooshemehr, Nastaran Abadi
    Maddah-Ali, Mohammad Ali
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (12) : 7985 - 7998
  • [29] Multipath Streaming: Fundamental Limits and Efficient Algorithms
    Combes, Richard
    Sidi, Habib B. A.
    Elayoubi, Salah-Eddine
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (01) : 188 - 199
  • [30] Multipath Streaming: Fundamental Limits and Efficient Algorithms
    Combes, Richard
    Sidi, Habib
    Elayoubi, Salah
    SIGMETRICS/PERFORMANCE 2016: PROCEEDINGS OF THE SIGMETRICS/PERFORMANCE JOINT INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SCIENCE, 2016, : 391 - 392