Summer maize LAI retrieval based on multi-source remote sensing data

被引:2
|
作者
Pan, Fangjiang [1 ,2 ]
Guo, Jinkai [1 ,2 ]
Miao, Jianchi [1 ,2 ]
Xu, Haiyu [1 ,2 ]
Tian, Bingquan [1 ,2 ]
Gong, Daocai [1 ,2 ]
Zhao, Jing [1 ,2 ,4 ]
Lan, Yubin [3 ,4 ]
机构
[1] Shandong Univ Technol, Sch Agr Engn & Food Sci, Zibo 255000, Shandong, Peoples R China
[2] Shandong Univ Technol, Natl Sub Ctr Int Collaborat Res Precis Agr Aviat P, Zibo 255000, Shandong, Peoples R China
[3] Shandong Univ Technol, Res Inst Ecol Unmanned Farm, Zibo 255000, Shandong, Peoples R China
[4] Shandong Univ Technol, 266 Xincun West Rd, Zibo 255000, Shandong, Peoples R China
关键词
maize; UAV multispectral; leaf area of index; growing degree day; canopy height model; vegetation index;
D O I
10.25165/j.ijabe.20231602.7285
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Leaf Area of Index (LAI) refers to half of the total leaf area of all crops per unit area. It is an important index to represent the photosynthetic capacity and biomass of crops. To obtain LAI conditions of summer maize in different growth stages quickly and accurately, further guiding field fertilization and irrigation. The Unmanned aerial vehicles (UAV) multispectral data, growing degree days, and canopy height model of 2020-2021 summer maize were used to carry out LAI inversion. The vegetation index was constructed by the ground hyperspectral data and multispectral data of the same range of bands. The correlation analysis was conducted to verify the accuracy of the multispectral data. To include many bands as possible, four vegetation indices which included R, G, B, and NIR bands were selected in this study to test the spectral accuracy. There were nine vegetation indices calculated with UAV multispectral data which were based on the red band and the near-infrared band. Through correlation analysis of LAI and the vegetation index, vegetation indices with a higher correlation to LAI were selected to construct the LAI inversion model. In addition, the Canopy Height Model (CHM) and Growing degree days (GDD) of summer maize were also calculated to build the LAI inversion model. The LAI inversion of summer maize was carried out based on multi-growth stages by using the general linear regression model (GLR), Multivariate nonlinear regression model (MNR), and the partial least squares regression (PLSR) models. R2 and RMSE were used to assess the accuracy of the model. The results show that the correlation between UAV multispectral data and hyperspectral data was greater than 0.64, which was significant. The Wide Dynamic Range Vegetation Index (WDRVI), Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Plant Biochemical Index (PBI), Optimized Soil-Adjusted Vegetation Index (OSAVI), CHM and GDD have a higher correlation with LAI. By comparing the models constructed by the three methods, it was found that the PLSR has the best inversion effect. It was based on OSAVI, GDD, RVI, PBI, CHM, NDVI, and WDRVI, with the training model's R2 being 0.866 3, the testing model's R2 being 0.710 2, RMSE was 1.1755. This study showed that the LAI inversion model based on UAV multispectral vegetation index, GDD, and CHM improves the accuracy of LAI inversion effectively. That means the growing degree days and crop population structure change have influenced the change of maize LAI certainly, and this method can provide decision support for maize growth monitoring and field fertilization.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 50 条
  • [21] The Potential of Moonlight Remote Sensing: A Systematic Assessment with Multi-Source Nightlight Remote Sensing Data
    Liu, Di
    Zhang, Qingling
    Wang, Jiao
    Wang, Yifang
    Shen, Yanyun
    Shuai, Yanmin
    REMOTE SENSING, 2021, 13 (22)
  • [22] Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China
    Huang, Xiaodong
    Deng, Jie
    Ma, Xiaofang
    Wang, Yunlong
    Feng, Qisheng
    Hao, Xiaohua
    Liang, Tiangang
    CRYOSPHERE, 2016, 10 (05): : 2453 - 2463
  • [23] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    LU Tianqi
    CHEN Shengbo
    TU Yuan
    YU Yan
    CAO Yijing
    JIANG Deyang
    Chinese Geographical Science, 2019, 29 (02) : 192 - 201
  • [24] Biomass Estimation and Saturation Value Determination Based on Multi-Source Remote Sensing Data
    Sa, Rula
    Nie, Yonghui
    Chumachenko, Sergey
    Fan, Wenyi
    REMOTE SENSING, 2024, 16 (12)
  • [25] A GRID-BASED PLATFORM FOR DISTRIBUTED MULTI-SOURCE REMOTE SENSING DATA SHARING
    Li Fan
    Zhang Xu
    Deng Guang
    Yong Shan
    Wang Hong-rong
    DCABES 2009: THE 8TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, PROCEEDINGS, 2009, : 270 - 274
  • [26] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    Tianqi Lu
    Shengbo Chen
    Yuan Tu
    Yan Yu
    Yijing Cao
    Deyang Jiang
    Chinese Geographical Science, 2019, 29 : 192 - 201
  • [27] Analysis of flood inundation in ungauged basins based on multi-source remote sensing data
    Gao, Wei
    Shen, Qiu
    Zhou, Yuehua
    Li, Xin
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (03)
  • [28] Analysis of flood inundation in ungauged basins based on multi-source remote sensing data
    Wei Gao
    Qiu Shen
    Yuehua Zhou
    Xin Li
    Environmental Monitoring and Assessment, 2018, 190
  • [29] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    Lu Tianqi
    Chen Shengbo
    Tu Yuan
    Yu Yan
    Cao Yijing
    Jiang Deyang
    CHINESE GEOGRAPHICAL SCIENCE, 2019, 29 (02) : 192 - 201
  • [30] Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data
    Shi, Wei
    Chen, Guan
    Meng, Xingmin
    Bian, Shiqiang
    Jin, Jiacheng
    Wu, Jie
    Huang, Fengchun
    Chong, Yan
    REMOTE SENSING, 2023, 15 (19)