共 50 条
Engineering of antisolvent dripping for large-area perovskite solar cell fabrication under air ambient conditions
被引:1
|作者:
Bansal, Nitin Kumar
[1
]
Ghosh, Subrata
[2
]
Porwal, Shivam
[2
]
Singh, Trilok
[1
,2
]
机构:
[1] Indian Inst Technol Delhi, Dept Energy Sci & Engn, New Delhi 110016, India
[2] Indian Inst Technol Kharagpur, Sch Energy Sci & Engn, Kharagpur 721302, India
关键词:
PERFORMANCE;
D O I:
10.1007/s10854-023-11764-1
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Fabricating perovskite films using the antisolvent dripping method has gained significant attention recently due to its simplicity and scalability. Unfortunately, this approach often leads to uneven distribution of antisolvent across the entire surface of a large substrate, mainly for substrates area larger than 6.5 cm2. In this study, we compare the effect of using a single-channel pipette versus a multichannel (MC) pipette during the antisolvent dripping process for depositing large-area perovskite films (25 cm2). Our results demonstrate that implementing an MC pipette improves the uniformity and the crystallinity of the large-area perovskite film. The devices formed by the film made from the MC strategy showed more uniform efficiency distribution and higher thermal stability. Impressively, MC-based devices depicted an average power conversion efficiency (PCE) of 16.15% (Best 18.19%). Whereas SC-based devices show an average PCE of 14.3% (Best 17.16%). This work provides valuable insights into optimizing large-area perovskite film fabrication techniques for solar cell applications.
引用
收藏
页数:10
相关论文