Self-supervised Health Representation Decomposition based on contrast learning

被引:12
|
作者
Wang, Yilin [1 ]
Shen, Lei [2 ]
Zhang, Yuxuan [1 ]
Li, Yuanxiang [1 ,3 ]
Zhang, Ruixin [2 ]
Yang, Yongshen [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai, Peoples R China
[2] Tecent, YouTu Lab, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
关键词
Prognostics and Health Management; Self-supervised learning; Representation learning; Remaining Useful Life Prediction; Fault Diagnosis; USEFUL LIFE PREDICTION; METHODOLOGY;
D O I
10.1016/j.ress.2023.109455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurately predicting the Remaining Useful Life (RUL) of equipment and diagnosing faults (FD) in Prognostics and Health Management (PHM) applications requires effective feature engineering. However, the large amount of time series data now available in industry is often unlabeled and contaminated by variable working conditions and noise, making it challenging for traditional feature engineering methods to extract meaningful system state representations from raw data. To address this issue, this paper presents a Self-supervised Health Representation Decomposition Learning(SHRDL) framework that is based on contrast learning. To extract effective representations from raw data with variable working conditions and noise, SHRDL incorporates an Attention-based Decomposition Network (ADN) as its encoder. During the contrast learning process, we incorporate cycle information as a priori and define a new loss function, the Cycle Information Modified Contrastive loss (CIMCL), which helps the model focus more on the contrast between hard samples. We evaluated SHRDL on three popular PHM datasets (N-CMAPPS engine dataset, NASA, and CALCE battery datasets) and found that it significantly improved RUL prediction and FD performance. Experimental results demonstrate that SHRDL can learn health representations from unlabeled data under variable working conditions and is robust to noise interference.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] SELF-SUPERVISED REPRESENTATION LEARNING FOR ULTRASOUND VIDEO
    Jiao, Jianbo
    Droste, Richard
    Drukker, Lior
    Papageorghiou, Aris T.
    Noble, J. Alison
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1847 - 1850
  • [22] Context Autoencoder for Self-supervised Representation Learning
    Xiaokang Chen
    Mingyu Ding
    Xiaodi Wang
    Ying Xin
    Shentong Mo
    Yunhao Wang
    Shumin Han
    Ping Luo
    Gang Zeng
    Jingdong Wang
    International Journal of Computer Vision, 2024, 132 : 208 - 223
  • [23] SelfDoc: Self-Supervised Document Representation Learning
    Li, Peizhao
    Gu, Jiuxiang
    Kuen, Jason
    Morariu, Vlad, I
    Zhao, Handong
    Jain, Rajiv
    Manjunatha, Varun
    Liu, Hongfu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5648 - 5656
  • [24] Solving Inefficiency of Self-supervised Representation Learning
    Wang, Guangrun
    Wang, Keze
    Wang, Guangcong
    Torr, Philip H. S.
    Lin, Liang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9485 - 9495
  • [25] Revisiting Self-Supervised Visual Representation Learning
    Kolesnikov, Alexander
    Zhai, Xiaohua
    Beyer, Lucas
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1920 - 1929
  • [26] Self-supervised Representation Learning for Astronomical Images
    Hayat, Md Abul
    Stein, George
    Harrington, Peter
    Lukic, Zarija
    Mustafa, Mustafa
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (02)
  • [27] Self-supervised representation learning for trip recommendation
    Gao, Qiang
    Wang, Wei
    Zhang, Kunpeng
    Yang, Xin
    Miao, Congcong
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [28] MusicBERT: A Self-supervised Learning of Music Representation
    Zhu, Hongyuan
    Niu, Ye
    Fu, Di
    Wang, Hao
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3955 - 3963
  • [29] Self-supervised Representation Learning on Dynamic Graphs
    Tian, Sheng
    Wu, Ruofan
    Shi, Leilei
    Zhu, Liang
    Xiong, Tao
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1814 - 1823
  • [30] Self-Supervised Dense Visual Representation Learning
    Ozcelik, Timoteos Onur
    Gokberk, Berk
    Akarun, Lale
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,