Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition

被引:98
|
作者
Liu, Yi-Feng [1 ,2 ,3 ,4 ]
Han, Kai [1 ]
Peng, Dan-Ni [1 ]
Kong, Ling-Yi [2 ]
Su, Yu [2 ,4 ]
Li, Hong-Wei [2 ,3 ,4 ]
Hu, Hai-Yan [2 ,4 ]
Li, Jia-Yang [2 ,4 ]
Wang, Hong-Rui
Fu, Zhi-Qiang [3 ]
Ma, Qiang [3 ]
Zhu, Yan-Fang [2 ,4 ]
Tang, Rui-Ren [1 ,7 ]
Chou, Shu-Lei [2 ,4 ]
Xiao, Yao [2 ,4 ,8 ]
Wu, Xiong-Wei [3 ,5 ,6 ,9 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Peoples Republ China, Changsha, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou, Peoples R China
[3] Hunan Agr Univ, Coll Agron, Sch Chem & Mat Sci, Changsha, Peoples R China
[4] Wenzhou Univ Technol, Wenzhou Key Lab Sodium Ion Batteries, Innovat Inst Carbon Neutralizat, Wenzhou, Peoples R China
[5] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[6] Hunan Prov Yin Feng New Energy Co Ltd, Changsha, Peoples R China
[7] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[8] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[9] Hunan Agr Univ, Coll Agron, Sch Chem & Mat Sci, Changsha 410128, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
air stability; interface chemistry; layered oxide cathodes; phase transition; sodium-ion batteries; O3/P2 HYBRID STRUCTURES; HIGH-VOLTAGE CATHODE; HIGH-ENERGY CATHODE; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; POSITIVE ELECTRODE; HIGH-CAPACITY; LONG-LIFE; NANI0.5MN0.5O2; CATHODE; CYCLING PERFORMANCE;
D O I
10.1002/inf2.12422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sodium-ion batteries (SIBs) are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries (LIBs) because of their similar working principle to LIBs, cost-effectiveness, and sustainable availability of sodium resources, especially in large-scale energy storage systems (EESs). Among various cathode candidates for SIBs, Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity, high operating potential, facile synthesis, and environmental benignity. However, there are a series of fatal issues in terms of poor air stability, unstable cathode/electrolyte interphase, and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application, outside to inside of layered oxide cathodes, which severely limit their practical application. This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms, and to provide a comprehensive summary of mainstream modification strategies including chemical substitution, surface modification, structure modulation, and so forth, concentrating on how to improve air stability, reduce interfacial side reaction, and suppress phase transition for realizing high structural reversibility, fast Na+ kinetics, and superior comprehensive electrochemical performance. The advantages and disadvantages of different strategies are discussed, and insights into future challenges and opportunities for layered oxide cathodes are also presented.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] Industrialization of Layered Oxide Cathodes for Lithium-Ion and Sodium-Ion Batteries: A Comparative Perspective
    Darga, Joe
    Lamb, Julia
    Manthiram, Arumugam
    ENERGY TECHNOLOGY, 2020, 8 (12)
  • [42] A comprehensive review of layered transition metal oxide cathodes for sodium-ion batteries: The latest advancements and future perspectives
    Li, Pengzhi
    Yuan, Tao
    Qiu, Jian
    Che, Haiying
    Ma, Qianqian
    Pang, Yuepeng
    Ma, Zi-Feng
    Zheng, Shiyou
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2025, 163
  • [43] Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance
    Li, Siqing
    Sun, Yuanyuan
    Pang, Yuepeng
    Xia, Shuixin
    Chen, Taiqiang
    Sun, Hao
    Zheng, Shiyou
    Yuan, Tao
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2022, 17 (04)
  • [44] Toward the High-Voltage Stability of Layered Oxide Cathodes for Sodium-Ion Batteries: Challenges, Progress, and Perspectives
    Chen, Zhigao
    Deng, Yuyu
    Kong, Ji
    Fu, Weibin
    Liu, Chenyang
    Jin, Ting
    Jiao, Lifang
    ADVANCED MATERIALS, 2024, 36 (26)
  • [45] Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries
    Wang, Qi
    Chu, Shiyong
    Guo, Shaohua
    CHINESE CHEMICAL LETTERS, 2020, 31 (09) : 2167 - 2176
  • [46] Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries
    Qi Wang
    Shiyong Chu
    Shaohua Guo
    ChineseChemicalLetters, 2020, 31 (09) : 2167 - 2176
  • [47] Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries
    Tan, Xiang
    Zeng, Jun
    Sun, Luyi
    Peng, Chenxi
    Li, Zheng
    Zou, Shuhao
    Shi, Qian
    Wang, Hui
    Liu, Jun
    INFOMAT, 2025,
  • [48] Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries
    Zhu, Yan-Fang
    Xiao, Yao
    Dou, Shi-Xue
    Kang, Yong-Mook
    Chou, Shu-Lei
    ESCIENCE, 2021, 1 (01): : 13 - 27
  • [49] Reductive coupling mechanism in layered oxide cathodes for lithium-/sodium-ion batteries
    Wang, Yao
    Liu, Yongchang
    SCIENCE CHINA-MATERIALS, 2025, 68 (03) : 775 - 779
  • [50] Impact of Potassium in Layered Cobalt Oxide Cathodes on Electrochemical Performance in Sodium-Ion Batteries
    Mikhailova, Daria
    Haase, Lea
    Nguyen, Hoang Bao An
    Thomas, Alexander
    Gorbunov, Mikhail V.
    Hantusch, Martin
    Avdeev, Maxim
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (45)