Cardamonin targets KEAP1/NRF2 signaling for protection against atherosclerosis

被引:9
|
作者
Fan, Pengfei [1 ,2 ]
Meng, Huali [1 ,2 ]
Hao, Wenhao [1 ,2 ]
Zheng, Yan [2 ]
Li, Hui [3 ]
Zhang, Zhiyue [3 ]
Du, Lei [1 ,2 ]
Guo, Xin [1 ,2 ]
Wang, Dongliang [4 ]
Wang, Yunyan [5 ]
Wu, Hao [1 ,2 ]
机构
[1] Shandong Univ, Cheeloo Coll Med, Sch Publ Hlth, Dept Nutr & Food Hyg, 44 Wenhuaxi Rd, Jinan 250012, Shandong, Peoples R China
[2] Shandong Univ, Jinan Cent Hosp, Res Ctr Translat Med, 105 Jiefang Rd, Jinan 250013, Shandong, Peoples R China
[3] Shandong Univ, Cheeloo Coll Med, Sch Pharmaceut Sci, NMPA Key Lab Technol Res & Evaluat Drug Prod,Key L, 44 Wenhuaxi Rd, Jinan 250012, Shandong, Peoples R China
[4] Sun Yat Sen Univ, Sch Publ Hlth, Dept Nutr, Northern Campus,74 Zhongshan Rd 2, Guangzhou 510080, Peoples R China
[5] Shandong Univ, Qilu Hosp, Cheeloo Coll Med, Dept Neurosurg, 107 Wenhuaxi Rd, Jinan 250012, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
AHR; INFLAMMATION; EXPRESSION; ENZYMES;
D O I
10.1039/d3fo00967j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Atherosclerosis (AS)-induced cardiovascular disease is a leading cause of death worldwide. To date, there is still a lack of effective approaches for AS intervention. Cardamonin (CAD) is a bioactive food component, but its effect on AS is unknown. In this work, CAD was investigated for its effect on AS using low-density lipoprotein receptor knockout mice and tumor necrosis factor-alpha (TNF-alpha)-stimulated endothelial cells (ECs). After a 12-week intervention, CAD was found to significantly prevent AS formation in the aortic root and aortic tree, reduce the necrotic core area, and inhibit aortic inflammation and oxidative stress. Moreover, CAD quenched TNF-alpha-provoked inflammation and oxidative stress in ECs. RNA-sequencing identified nuclear factor erythroid-2 related factor 2 (NFE2L2, NRF2)/heme oxidase 1 (HO1) signaling to be drastically activated by CAD. CAD is a known activator of the aryl hydrocarbon receptor (AHR) which is a transcription factor of the NFE2L2 gene. Surprisingly, AHR was not required for CAD's action on the activation of NRF2/HO1 signaling since AHR gene silencing did not reverse this effect. Furthermore, a molecular docking assay showed a strong binding potential of CAD to the Kelch domain of the Kelch-like ECH-associated protein 1 (KEAP1) which sequesters NRF2 in the cytoplasm. Both CAD and the Kelch domain inhibitor Ki696 promoted NRF2 nuclear translocation, whereas the combination of CAD and Ki696 did not yield a greater effect compared with either CAD or Ki696, confirming the interaction of CAD with the Kelch domain. This work provides an experimental basis for CAD as a novel and effective bioactive food component in future AS interventions.
引用
收藏
页码:4905 / 4920
页数:16
相关论文
共 50 条
  • [41] Nrf2 signaling in heart failure: expression of Nrf2, Keap1, antioxidant, and detoxification genes in dilated or ischemic cardiomyopathy
    Lu, Yingying
    An, Lingling
    Taylor, Matthew R. G.
    Chen, Qin M.
    PHYSIOLOGICAL GENOMICS, 2022, 54 (03) : 115 - 127
  • [42] KEAP1 and done? Targeting the NRF2 pathway with sulforaphane
    Dinkova-Kostova, Albena T.
    Fahey, Jed W.
    Kostov, Rumen V.
    Kensler, Thomas W.
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2017, 69 : 257 - 269
  • [43] Nrf2 sequesters Keap1 preventing endothelial dysfunction
    Kopacz, A.
    Kloska, D.
    Cysewski, D.
    Dulak, J.
    Jozkowicz, A.
    Grochot-Przeczek, A.
    CARDIOVASCULAR RESEARCH, 2018, 114 : S92 - S92
  • [44] Thermodynamic profiling of inhibitors of Nrf2: Keap1 interactions
    Nasiri, Hamid R.
    Linge, Sandra
    Ullmann, Dirk
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2016, 26 (02) : 526 - 529
  • [45] KEAP1 and done? Targeting the NRF2 pathway with sulforaphane
    Kensler, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [46] Tethering of Nrf2 to Keap1 prevents Nrf2 degradation by the ubiquitin proteasome pathway
    Sekhar, K
    Yan, X
    Freeman, M
    FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 : S350 - S351
  • [47] Nrf2 activation through the inhibition of Keap1–Nrf2 protein–protein interaction
    Sumi Lee
    Longqin Hu
    Medicinal Chemistry Research, 2020, 29 : 846 - 867
  • [48] Activation of Nrf2 Translation by a Keap1 Independent Mechanism
    Perez-Leal, Oscar
    Barrero, Carlos A.
    Merali, Salim
    FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 : S108 - S108
  • [49] Electrophilic metabolites targeting the KEAP1/NRF2 partnership
    Dinkova-Kostova, Albena T.
    Hakomaki, Henriikka
    Levonen, Anna-Liisa
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2024, 78
  • [50] Role of the Keap1/Nrf2 pathway in neurodegenerative diseases
    Yamazaki, Hiromi
    Tanji, Kunikazu
    Wakabayashi, Koichi
    Matsuura, Shin
    Itoh, Ken
    PATHOLOGY INTERNATIONAL, 2015, 65 (05) : 210 - 219