On the largest prime factor of n2 C 1

被引:1
|
作者
Merikoski, Jori [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg, Woodstock Rd, Oxford OX2 6GG, England
关键词
Prime numbers; sieve methods; Kloosterman sums;
D O I
10.4171/JEMS/1216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the largest prime factor of n2 + 1 is infinitely often greater than n1.279. This improves the result of de la Breteche and Drappeau specialIntscript who obtained this with 1.2182 in place of 1.279. The main new ingredients in the proof are a new Type II estimate and using this estimate by applying Harman's sieve method. To prove the Type II estimate we use the bounds of Deshouillers and Iwaniec on linear forms of Kloosterman sums. We also show that conditionally on Selberg's eigenvalue conjecture the exponent 1.279 may be increased to 1.312.
引用
收藏
页码:1253 / 1284
页数:32
相关论文
共 50 条
  • [41] Two problems on the greatest prime factor of n2+1
    Harman, Glyn
    ACTA ARITHMETICA, 2024, 213 (03) : 273 - 287
  • [42] On the largest prime factor of (ab+1)(ac+1)(bc+1)
    Hernández, S
    Luca, F
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2003, 9 (02): : 235 - 244
  • [43] The estimate for mean values on prime numbers relative to 4/p=1/(n1) + 1/(n2) + 1/(n3)
    JIA ChaoHua 1
    2 Hua Loo-Keng Key Laboratory of Mathematics
    Science China(Mathematics), 2012, 55 (03) : 465 - 474
  • [44] A detailed discussion of the N2(C 3IIu) and N2(X 1Σg+) vibrational temperatures in N2 glow discharges
    Levaton, J
    Amorim, J
    Monna, V
    Nagai, J
    Ricard, A
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2004, 26 (01): : 59 - 64
  • [45] Consecutive Integers Divisible by a Power of their Largest Prime Factor
    De Koninck, Jean-Marie
    Moineau, Matthieu
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (09)
  • [46] SUMMING THE LARGEST PRIME FACTOR OVER INTEGER SEQUENCES
    De Koninck, Jean-Marie
    Jakimczuk, Rafael
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 27 - 35
  • [47] ADDITIVE-FUNCTIONS AND THE LARGEST PRIME FACTOR OF INTEGERS
    DEKONINCK, JM
    KATAI, I
    MERCIER, A
    JOURNAL OF NUMBER THEORY, 1989, 33 (03) : 293 - 310
  • [48] Exponential sums involving the largest prime factor function
    De Koninck, Jean-Marie
    Katai, Imre
    ACTA ARITHMETICA, 2011, 146 (03) : 233 - 245
  • [49] ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1351 - 1366
  • [50] On values taken by the largest prime factor of shifted primes
    Banks, William D.
    Shparlinski, Igor E.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 : 133 - 147