MULTIPOLAR POTENTIALS AND WEIGHTED HARDY INEQUALITIES

被引:2
|
作者
Canale, Anna [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, Sa, Italy
来源
关键词
Improved Hardy inequality; weight functions; singular potentials; Kol- mogorov operators; OPERATORS; SCHRODINGER; EQUATIONS;
D O I
10.3934/dcdss.2023049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we state the following weighted Hardy type inequality for any functions phi in a weighted Sobolev space and for weight functions mu of a quite general type J J J cN,mu RN V phi 2 mu(x)dx <= RN | backward difference phi|2 mu(x)dx + C mu RNW phi 2 mu(x)dx, where V is a multipolar potential and W is a bounded function from above depending on mu. Our method is based on introducing a suitable vector-valued function and an integral identity that we state in the paper. We prove that the constant cN,mu in the estimate is optimal by building a suitable sequence of functions.
引用
收藏
页码:2058 / 2067
页数:10
相关论文
共 50 条
  • [21] WEIGHTED HARDY INEQUALITIES FOR INCREASING FUNCTIONS
    HEINIG, HP
    STEPANOV, VD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (01): : 104 - 116
  • [22] Weighted Discrete Hardy's Inequalities
    Lefevre, Pascal
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (07) : 1153 - 1157
  • [23] On weighted Hardy inequalities in mixed norms
    Prokhorov, D. V.
    Stepanov, V. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) : 149 - 164
  • [24] Sharp weighted fractional Hardy inequalities
    Dyda, Bartlomiej
    Kijaczko, Michal
    STUDIA MATHEMATICA, 2024, 274 (02) : 153 - 171
  • [25] Hardy inequalities for weighted Dirac operator
    Kyril Adimurthi
    Annali di Matematica Pura ed Applicata, 2010, 189 : 241 - 251
  • [26] Weighted φ──Inequalities for Generalized Hardy Operator
    刘岚
    数学季刊, 1995, (01) : 13 - 20
  • [27] Weighted Hardy inequalities and the size of the boundary
    Juha Lehrbäck
    manuscripta mathematica, 2008, 127 : 249 - 273
  • [28] On weighted Hardy inequalities in mixed norms
    D. V. Prokhorov
    V. D. Stepanov
    Proceedings of the Steklov Institute of Mathematics, 2013, 283 : 149 - 164
  • [29] WEIGHTED MULTILINEAR HARDY AND RELLICH INEQUALITIES
    Edmunds, David E.
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 395 - 398
  • [30] Weighted hardy inequalities with sharp constants
    Avkhadiev F.G.
    Wirths K.-J.
    Lobachevskii Journal of Mathematics, 2010, 31 (1) : 1 - 7