Convergence of a Weighted Barrier Algorithm for Stochastic Convex Quadratic Semidefinite Optimization

被引:1
|
作者
Alzalg, Baha [1 ,2 ]
Gafour, Asma [1 ,3 ]
机构
[1] Univ Jordan, Dept Math, Amman 11942, Jordan
[2] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA
[3] Univ Djillali Liabes Sidi Bel Abbes, Dept Math, Sidi Bel Abbes 22038, Algeria
关键词
Quadratic semidefinite programming; Two-stage stochastic programming; Large-scale optimization; Interior-point methods; Decomposition; POINT DECOMPOSITION ALGORITHMS; UNCERTAINTY;
D O I
10.1007/s10957-022-02128-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Mehrotra and ozevin (SIAM J Optim 19:1846-1880, 2009) computationally found that a weighted barrier decomposition algorithm for two-stage stochastic conic programs achieves significantly superior performance when compared to standard barrier decomposition algorithms existing in the literature. Inspired by this motivation, Mehrotra and ozevin (SIAM J Optim 20:2474-2486, 2010) theoretically analyzed the iteration complexity for a decomposition algorithm based on the weighted logarithmic barrier function for two-stage stochastic linear optimization with discrete support. In this paper, we extend the aforementioned theoretical paper and its self-concordance analysis from the polyhedral case to the semidefinite case and analyze the iteration complexity for a weighted logarithmic barrier decomposition algorithm for two-stage stochastic convex quadratic SDP with discrete support.
引用
收藏
页码:490 / 515
页数:26
相关论文
共 50 条
  • [41] On convergence of a stochastic quasigradient algorithm of quantile optimization
    Kan, YS
    AUTOMATION AND REMOTE CONTROL, 2003, 64 (02) : 263 - 278
  • [42] A sensitivity result for quadratic semidefinite programs with an application to a sequential quadratic semidefinite programming algorithm
    Garcés, Rodrigo
    Gómez, Walter
    Jarre, Florian
    Computational and Applied Mathematics, 2012, 31 (01) : 205 - 218
  • [43] A sensitivity result for quadratic semidefinite programs with an application to a sequential quadratic semidefinite programming algorithm
    Garces, Rodrigo
    Gomez, Walter
    Jarre, Florian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (01): : 205 - 218
  • [44] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [45] Complex quadratic optimization and semidefinite programming
    Zhang, SZ
    Huang, YW
    SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) : 871 - 890
  • [46] Convex approximations in stochastic programming by semidefinite programming
    Deak, Istvan
    Polik, Imre
    Prekopa, Andras
    Terlaky, Tamas
    ANNALS OF OPERATIONS RESEARCH, 2012, 200 (01) : 171 - 182
  • [47] Semidefinite relaxation and nonconvex quadratic optimization
    Nesterov, Y
    OPTIMIZATION METHODS & SOFTWARE, 1998, 9 (1-3): : 141 - 160
  • [48] A LOGARITHMIC BARRIER FUNCTION ALGORITHM FOR QUADRATICALLY CONSTRAINED CONVEX QUADRATIC PROGRAMMING
    Goldfarb, Donald
    Liu, Shucheng
    Wang, Siyun
    SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) : 252 - 267
  • [49] Convex approximations in stochastic programming by semidefinite programming
    István Deák
    Imre Pólik
    András Prékopa
    Tamás Terlaky
    Annals of Operations Research, 2012, 200 : 171 - 182
  • [50] AN EFFICIENT ALGORITHM FOR CONVEX QUADRATIC SEMI-DEFINITE OPTIMIZATION
    Zhang, Lipu
    Xu, Yinghong
    Jin, Zhengjing
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (01): : 129 - 144