Who is partner: A new perspective on data association of multi-object tracking

被引:2
|
作者
Ding, Yuqing [1 ]
Sun, Yanpeng [1 ]
Li, Zechao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nanjing 210014, Peoples R China
基金
中国国家自然科学基金;
关键词
Data association; Multi -object tracking; Kalman filter; PERFORMANCE;
D O I
10.1016/j.imavis.2023.104737
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Occlusion problem refers to the challenge of accurately tracking blocked or occluded objects. It occurs when mul-tiple objects are moving nearby or overlapping with each other in the scene. Despite its frequent occurrence in multi-object tracking (MOT) tasks, occlusion is often overlooked by researchers. This paper proposes a simple and effective method to partially solve the occlusion problems of multi-object tracking by developing the Partner Mining Module (PMM) and the Partner Updating Module (PUM). The PMM module mines the space relationship between objects, and the PUM module uses the relationship obtained by the PMM module to update lost tracklets' positions. Importantly, these two modules can be integrated into existing data association-based multi-object tracking methods without any additional training expenses. Furthermore, this study proposes novel methods for computing measurement uncertainty to enhance trajectory accuracy. Experiments conducted on MOT16 and MOT17 datasets show the effectiveness of the proposed modules. Integration of PMM and PUM into original methods substantially enhances the IDF1 score by 1 point.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] A Novel Fuzzy Data Association Approach for Visual Multi-object Tracking
    Li, Liang-Qun
    Li, En-Qun
    He, Wen-Ming
    4TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA 2017), 2017, 12
  • [12] Multi-Object Tracking Based on Feature Fusion and Hierarchical Data Association
    Liu, Yan
    Qin, Pinle
    Zeng, Jianchao
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1742 - 1747
  • [13] Global data association for multi-object tracking using network flows
    Zhang, Li
    Li, Yuan
    Nevatia, Ramakant
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 1881 - 1888
  • [14] A Hybrid Data Association Framework for Robust Online Multi-Object Tracking
    Yang, Min
    Wu, Yuwei
    Jia, Yunde
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) : 5667 - 5679
  • [15] Data Association for Multi-Object Tracking via Deep Neural Networks
    Yoon, Kwangjin
    Kim, Du Yong
    Yoon, Young-Chul
    Jeon, Moongu
    SENSORS, 2019, 19 (03)
  • [16] DASOT: A Unified Framework Integrating Data Association and Single Object Tracking for Online Multi-Object Tracking
    Chu, Qi
    Ouyang, Wanli
    Liu, Bin
    Zhu, Feng
    Yu, Nenghai
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10672 - 10679
  • [17] MULTI-OBJECT TRACKING WITH TRACKED OBJECT BOUNDING BOX ASSOCIATION
    Yang, Nanyang
    Wang, Yi
    Chau, Lap-Pui
    2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
  • [18] Data Association for Multi-Object Tracking-by-Detection in Multi-Camera Networks
    Bredereck, Michael
    Jiang, Xiaoyan
    Koerner, Marco
    Denzler, Joachim
    2012 SIXTH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), 2012,
  • [19] Multi-object Tracking Cascade with Multi-Step Data Association and Occlusion Handling
    Al-Shakarji, Noor M.
    Bunyak, Filiz
    Seetharaman, Guna
    Palaniappan, Kannappan
    2018 15TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2018, : 423 - 428
  • [20] Motion Vector Based Data Association for On-line Multi-Object Tracking
    Ma, Cong
    Miao, Zhenjiang
    Zhang, Xiao-Ping
    Li, Min
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 132 - 137