Improving Query and Assessment Quality in Text-Based Interactive Video Retrieval Evaluation

被引:1
|
作者
Bailer, Werner [1 ]
Arnold, Rahel [2 ]
Benz, Vera [2 ]
Coccomini, Davide Alessandro [3 ]
Gkagkas, Anastasios [4 ]
Gudmundsson, Gylfi Thor [5 ]
Heller, Silvan [2 ]
Jonsson, Bjorn Thor [5 ]
Lokoc, Jakub [6 ]
Messina, Nicola [3 ]
Pantelidis, Nick [4 ]
Wu, Jiaxin [7 ]
机构
[1] JOANNEUM Res, Graz, Austria
[2] Univ Basel, Basel, Switzerland
[3] CNR ISTI, Pisa, Italy
[4] CERTH ITI, Thessaloniki, Greece
[5] Reykjavik Univ, Reykjavik, Iceland
[6] Charles Univ Prague, Prague, Czech Republic
[7] City Univ Hong Kong, Hong Kong, Peoples R China
关键词
video retrieval; evaluation; benchmarking; quality assurance;
D O I
10.1145/3591106.3592281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Different task interpretations are a highly undesired element in interactive video retrieval evaluations. When a participating team focuses partially on a wrong goal, the evaluation results might become partially misleading. In this paper, we propose a process for refining known-item and open-set type queries, and preparing the assessors that judge the correctness of submissions to openset queries. Our findings from recent years reveal that a proper methodology can lead to objective query quality improvements and subjective participant satisfaction with query clarity.
引用
收藏
页码:597 / 601
页数:5
相关论文
共 50 条
  • [21] Text-Based Face Retrieval: Methods and Challenges
    Deng, Yuchuan
    Zhao, Qijun
    Hu, Zhanpeng
    Xu, Zixiang
    BIOMETRIC RECOGNITION, CCBR 2023, 2023, 14463 : 150 - 159
  • [22] Application of Discriminative Models for Interactive Query Refinement in Video Retrieval
    Srivastava, Amit
    Khanwalkar, Saurabh
    Kumar, Anoop
    SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [23] Evaluation of N-grams conflation approach in text-based information retrieval
    Kosinov, S
    EIGHTH SYMPOSIUM ON STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2001, : 136 - 142
  • [24] Controllable Video Generation With Text-Based Instructions
    Koksal, Ali
    Ak, Kenan E.
    Sun, Ying
    Rajan, Deepu
    Lim, Joo Hwee
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 190 - 201
  • [25] Text-Based Localization of Moments in a Video Corpus
    Paul, Sudipta
    Mithun, Niluthpol Chowdhury
    Roy-Chowdhury, Amit K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8886 - 8899
  • [26] Arabic text-based Video indexing and retrieval system enhanced by semantic content and relevance feedback
    Hamroun, Mohamed
    Lajmi, Sonia
    Nicolas, Henri
    Amous, Ikram
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,
  • [27] Improving Text-Based Person Retrieval by Excavating All-Round Information Beyond Color
    Zhu, Aichun
    Wang, Zijie
    Xue, Jingyi
    Wan, Xili
    Jin, Jing
    Wang, Tian
    Snoussi, Hichem
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [28] Grandmaster: Interactive text-based analytics of social media
    Fabian, Nathan
    Davis, Warren
    Raybourn, Elaine M.
    Lakkaraju, Kiran
    Whetzel, Jon
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 1375 - 1381
  • [29] Exploring fonts as retrieval cues in text-based learning
    Krieglstein, Felix
    Jansen, Sebastian
    Meusel, Felicia
    Scheller, Nadine
    Schmitz, Manuel
    Wesenberg, Lukas
    Rey, Guenter Daniel
    ACTA PSYCHOLOGICA, 2024, 251
  • [30] Image Sense Classification in Text-Based Image Retrieval
    Chang, Yih-Chen
    Chen, Hsin-Hsi
    INFORMATION RETRIEVAL TECHNOLOGY, PROCEEDINGS, 2009, 5839 : 124 - 135