Multi-fidelity reduced-order surrogate modelling

被引:5
|
作者
Conti, Paolo [1 ]
Guo, Mengwu [3 ]
Manzoni, Andrea [2 ]
Frangi, Attilio [1 ]
Brunton, Steven L. [4 ]
Kutz, J. Nathan [5 ]
机构
[1] Dept Civil Engn, Politecn Milano, I-20133 Milan, Italy
[2] MOX Dept Math, Politecn Milano, I-20133 Milan, Italy
[3] Univ Twente, Dept Appl Math, NL-7522 NB Enschede, Netherlands
[4] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[5] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
reduced-order modelling; multi-fidelity surrogate modelling; LSTM networks; proper orthogonal decomposition; parametrized PDEs; NETWORKS; REDUCTION; IDENTIFICATION; INFERENCE; OUTPUT;
D O I
10.1098/rspa.2023.0655
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-fidelity numerical simulations of partial differential equations (PDEs) given a restricted computational budget can significantly limit the number of parameter configurations considered and/or time window evaluated. Multi-fidelity surrogate modelling aims to leverage less accurate, lower-fidelity models that are computationally inexpensive in order to enhance predictive accuracy when high-fidelity data are scarce. However, low-fidelity models, while often displaying the qualitative solution behaviour, fail to accurately capture fine spatio-temporal and dynamic features of high-fidelity models. To address this shortcoming, we present a data-driven strategy that combines dimensionality reduction with multi-fidelity neural network surrogates. The key idea is to generate a spatial basis by applying proper orthogonal decomposition (POD) to high-fidelity solution snapshots, and approximate the dynamics of the reduced states-time-parameter-dependent expansion coefficients of the POD basis-using a multi-fidelity long short-term memory network. By mapping low-fidelity reduced states to their high-fidelity counterpart, the proposed reduced-order surrogate model enables the efficient recovery of full solution fields over time and parameter variations in a non-intrusive manner. The generality of this method is demonstrated by a collection of PDE problems where the low-fidelity model can be defined by coarser meshes and/or time stepping, as well as by misspecified physical features.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A Novel Multi-Fidelity Surrogate for Efficient Turbine Design Optimization
    Wang, Qineng
    Song, Liming
    Guo, Zhendong
    Li, Jun
    Feng, Zhenping
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2024, 146 (04):
  • [32] A BAYESIAN NEURAL NETWORK APPROACH TO MULTI-FIDELITY SURROGATE MODELING
    Kerleguer, Baptiste
    Cannamela, Claire
    Garnier, Josselin
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2024, 14 (01) : 43 - 60
  • [33] A multi-fidelity surrogate model based on support vector regression
    Maolin Shi
    Liye Lv
    Wei Sun
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2020, 61 : 2363 - 2375
  • [34] Stochastic multi-fidelity surrogate modeling of dendritic crystal growth
    Winter, J. M.
    Kaiser, J. W. J.
    Adami, S.
    Akhatov, I. S.
    Adams, N. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [35] Selection of Existing Sail Designs for Multi-Fidelity Surrogate Models
    Peart, Tanya
    Aubin, Nicolas
    Nava, Stefano
    Cater, John
    Norris, Stuart
    Journal of Sailing Technology, 2022, 7 (01): : 31 - 51
  • [36] A multi-fidelity surrogate model based on design variable correlations
    Lai, Xiaonan
    Pang, Yong
    Liu, Fuwen
    Sun, Wei
    Song, Xueguan
    ADVANCED ENGINEERING INFORMATICS, 2024, 59
  • [37] Multi-fidelity surrogate model ensemble based on feasible intervals
    Shuai Zhang
    Pengwei Liang
    Yong Pang
    Jianji Li
    Xueguan Song
    Structural and Multidisciplinary Optimization, 2022, 65
  • [38] Efficient initialization for multi-fidelity surrogate-based optimization
    Jeroen Wackers
    Riccardo Pellegrini
    Andrea Serani
    Michel Visonneau
    Matteo Diez
    Journal of Ocean Engineering and Marine Energy, 2023, 9 : 291 - 307
  • [39] Hybrid uncertainty propagation based on multi-fidelity surrogate model
    Liu, Jinxing
    Shi, Yan
    Ding, Chen
    Beer, Michael
    COMPUTERS & STRUCTURES, 2024, 293
  • [40] Efficient initialization for multi-fidelity surrogate-based optimization
    Wackers, Jeroen
    Pellegrini, Riccardo
    Serani, Andrea
    Visonneau, Michel
    Diez, Matteo
    JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2023, 9 (02) : 291 - 307