Practical Study of Recurrent Neural Networks for Efficient Real-Time Drone Sound Detection: A Review

被引:18
|
作者
Utebayeva, Dana [1 ]
Ilipbayeva, Lyazzat [2 ]
Matson, Eric T. [3 ]
机构
[1] Satbayev Univ, Dept ET & ST, Alma Ata 050013, Kazakhstan
[2] Int IT Univ, Dept RET, Alma Ata 050040, Kazakhstan
[3] Purdue Univ, Dept CIT, W Lafayette, IN 47907 USA
关键词
RNN; simpleRNN; LSTM; BiLSTM; bidirectional LSTM; gated recurrent networks; GRU; Kapre method; Mel-spectrogram; deep learning; UAV sound; sound detection; loaded UAV; unloaded UAV; drone detection; real-time UAV detection;
D O I
10.3390/drones7010026
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The detection and classification of engine-based moving objects in restricted scenes from acoustic signals allow better Unmanned Aerial System (UAS)-specific intelligent systems and audio-based surveillance systems. Recurrent Neural Networks (RNNs) provide wide coverage in the field of acoustic analysis due to their effectiveness in widespread practical applications. In this work, we propose to study SimpleRNN, LSTM, BiLSTM, and GRU recurrent network models for real-time UAV sound recognition systems based on Mel-spectrogram using Kapre layers. The main goal of the work is to study the types of RNN networks in a practical sense for a reliable drone sound recognition system. According to the results of an experimental study, the GRU (Gated Recurrent Units) network model demonstrated a higher prediction ability than other RNN architectures for detecting differences and the state of objects from acoustic signals. That is, RNNs gave higher recognition than CNNs for loaded and unloaded audio states of various UAV models, while the GRU model showed about 98% accuracy for determining the UAV load states and 99% accuracy for background noise, which consisted of more other data.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Real-time detection of uncalibrated sensors using neural networks
    Luis J. Muñoz-Molina
    Ignacio Cazorla-Piñar
    Juan P. Dominguez-Morales
    Luis Lafuente
    Fernando Perez-Peña
    Neural Computing and Applications, 2022, 34 : 8227 - 8239
  • [32] Adaptive real-time road detection using neural networks
    Foedisch, M
    Takeuchi, A
    ITSC 2004: 7TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, 2004, : 167 - 172
  • [33] Real-Time Plume Detection and Segmentation Using Neural Networks
    Dwight Temple
    The Journal of the Astronautical Sciences, 2020, 67 : 1793 - 1810
  • [34] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 264 - 269
  • [35] Convolutional Neural Networks for Real-Time and Wireless Damage Detection
    Avci, Onur
    Abdeljaber, Osama
    Kiranyaz, Serkan
    Inman, Daniel
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, IMAC 2019, 2020, : 129 - 136
  • [36] Real-Time Face Detection Using Artificial Neural Networks
    Aulestia, Pablo S.
    Talahua, Jonathan S.
    Andaluz, Victor H.
    Benalcazar, Marco E.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 590 - 599
  • [37] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    FRONTIERS IN BIG DATA, 2023, 6
  • [38] Real-Time Plume Detection and Segmentation Using Neural Networks
    Temple, Dwight
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2020, 67 (04): : 1793 - 1810
  • [39] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [40] Real-time detection of uncalibrated sensors using neural networks
    Munoz-Molina, Luis J.
    Cazorla-Pinar, Ignacio
    Dominguez-Morales, Juan P.
    Lafuente, Luis
    Perez-Pena, Fernando
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 8227 - 8239