A protocol for high-throughput screening for immunomodulatory compounds using human primary cells

被引:2
|
作者
Chew, Katherine [1 ]
Lee, Branden [1 ]
Ozonoff, Al [1 ,2 ]
Smith, Jennifer A. [3 ]
Levy, Ofer [1 ,2 ,4 ]
Dowling, David J. [1 ,2 ]
Van Haren, Simon [1 ,2 ]
机构
[1] Boston Childrens Hosp, Precis Vaccines Program, Div Infect Dis, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[3] Harvard Med Sch, ICCB Longwood Screening Facil, Boston, MA USA
[4] Broad Inst MIT & Harvard, Cambridge, MA USA
来源
STAR PROTOCOLS | 2023年 / 4卷 / 03期
基金
美国国家卫生研究院;
关键词
Biotechnology and bioengineering; Cell-based Assays; Flow Cytometry/Mass Cytometry; High-Throughput Screening; Immunology;
D O I
10.1016/j.xpro.2023.102405
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput screening is a powerful platform that can rapidly provide valu-able cytotoxic, immunological, and phenotypical information for thousands of compounds. Human peripheral blood mononuclear cells (PBMCs) cultured in autologous plasma can model the human immune response. Here, we describe a protocol to stimulate PBMCs for 72 h and measure cytokine secretion via AlphaLISA assays and cell surface activation marker expression via flow cytome-try. Cryopreserved PBMCs are incubated for 72 h with various small molecule li-braries and the supernatants are harvested to rapidly measure secretion levels of key cytokines (tumor necrosis factor alpha, interferon gamma, interleukin 10) via the AlphaLISA assay. Almost simultaneously, the cells can be fixated and stained using antibodies against innate immune activation markers (CD80, CD86, HLA-DR, OX40) for analysis via flow cytometry. This multiplexed readout workflow can directly aid in the phenotypic identification and discovery of novel immuno-modulators and potential vaccine adjuvant candidates. For complete details on the use and execution of this protocol, please refer to Chew et al.1
引用
收藏
页数:15
相关论文
共 50 条
  • [21] High-throughput phenotypic screening of the human spermatozoon
    Johnston, Zoe C.
    Gruber, Franz S.
    Brown, Sean G.
    Norcross, Neil R.
    Swedlow, Jason
    Gilbert, Ian H.
    Barratt, Christopher L. R.
    REPRODUCTION, 2022, 163 (01) : R1 - R9
  • [22] High-throughput screening for human galactokinase inhibitors
    Wierenga, Klaas J.
    Lai, Kent
    Buchwald, Peter
    Tang, Manshu
    JOURNAL OF BIOMOLECULAR SCREENING, 2008, 13 (05) : 415 - 423
  • [23] High-throughput screening for antiferromagnetic Heusler compounds using density functional theory
    Balluff, Jan
    Diekmann, Kevin
    Reiss, Guenter
    Meinert, Markus
    PHYSICAL REVIEW MATERIALS, 2017, 1 (03):
  • [24] A high-throughput screening assay using Krabbe disease patient cells
    Maegawa, Gustavo
    Ribbens, Jameson
    Whiteley, Grace
    Furuya, Hirokazu
    Southall, Noel
    Hu, Xin
    Marugan, Juan
    Ferrer, Marc
    Maegawa, Gustavo
    MOLECULAR GENETICS AND METABOLISM, 2013, 108 (02) : S63 - S63
  • [25] A high-throughput screening assay using Krabbe disease patient cells
    Ribbens, Jameson
    Whiteley, Grace
    Furuya, Hirokazu
    Southall, Noel
    Hu, Xin
    Marugan, Juan
    Ferrer, Marc
    Maegawa, Gustavo H. B.
    ANALYTICAL BIOCHEMISTRY, 2013, 434 (01) : 15 - 25
  • [26] ESTABLISHMENT OF CLINICAL PROTOCOL TARGETING CANCER STEM CELLS IN RECURRENT GLIOBLASTOMA USING HIGH-THROUGHPUT DRUG SCREENING
    Skaga, Erlend
    Kulesskiy, Evgeny
    Brynjulfsen, Marit
    Sandberg, Cecilie Jonsgar
    Kyttala, Aija
    Langmoen, Iver Arne
    Laakso, Aki
    Gaal-Paavola, Em-Lia
    Perola, Markus
    Wennerberg, Krister
    Vik-Mo, Einar Osland
    NEURO-ONCOLOGY, 2017, 19 : 18 - 18
  • [27] A high-throughput DNA FISH protocol to visualize genome regions in human cells
    Finn, Elizabeth H.
    Misteli, Tom
    STAR PROTOCOLS, 2021, 2 (03):
  • [29] High-throughput screening
    Lloyd, A
    DRUG DISCOVERY TODAY, 1998, 3 (12) : 566 - 566
  • [30] High-throughput screening
    Aris Persidis
    Nature Biotechnology, 1998, 16 : 488 - 489