Gene targeting in adult organs using in vivo cleavable donor plasmids for CRISPR-Cas9 and CRISPR-Cas12a

被引:2
|
作者
Ishibashi, Riki [1 ,2 ]
Maki, Ritsuko [1 ]
Toyoshima, Fumiko [1 ,2 ,3 ]
机构
[1] Kyoto Univ, Inst Life & Med Sci, Dept Biosyst Sci, Sakyo Ku, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Biostudies, Dept Mammalian Regulatory Networks, Sakyo Ku, Kyoto 6068502, Japan
[3] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Homeostat Med, Bunkyo Ku, Yushima, Tokyo 1138510, Japan
基金
日本学术振兴会;
关键词
HYDRODYNAMIC INJECTION; RNA INTERFERENCE; HIGH-LEVEL; NAKED DNA; EXPRESSION; GENOME; DELIVERY; HEPATOCYTES; LIVER; CPF1;
D O I
10.1038/s41598-024-57551-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CRISPR-Cas system for in vivo genome editing is a powerful tool for gene therapy against several diseases. We have previously developed the pCriMGET_9-12a system, an in vivo cleavable donor plasmid for precise targeted knock-in of exogenous DNA by both Cas9 and Cas12a. Here, we show that the pCriMGET_9-12a system can be applied for in vivo in-frame knock-in of exogenous DNA in adult mouse liver by hydrodynamic delivery of the targeting plasmids. The in vivo cleavable pCriMGET_9-12a donor plasmids significantly increased the knock-in efficiency of both CRISPR-Cas9 and CRISPR-Cas12a in the adult mouse liver compared to uncleavable donor plasmids. This strategy also achieved in-frame reporter gene knock-in without indel mutations. Therefore, in vivo gene targeting using the pCriMGET_9-12a system may contribute to the establishment of safer, more precise, versatile and efficient gene therapy methods in adult organs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] CRISPR-Cas9 gene editing and human diseases
    Jinka, Chaitra
    Sainath, Chithirala
    Babu, Shyamaladevi
    Chakravarthi, Chennupati Ashok
    Prasanna, Muppidi Lakshmi
    Krishnan, Madhan
    Sekar, Gayathri
    Chinnaiyan, Mayilvanan
    Kumari, Andugula Swapna
    BIOINFORMATION, 2022, 18 (11) : 1081 - 1086
  • [42] Safeguarding CRISPR-Cas9 gene drives in yeast
    DiCarlo, James E.
    Chavez, Alejandro
    Dietz, Sven L.
    Esvelt, Kevin M.
    Church, George M.
    NATURE BIOTECHNOLOGY, 2015, 33 (12) : 1250 - +
  • [43] CRISPR-Cas9 gene editing causes alternative splicing of the targeting mRNA
    Zhang, Qian
    Fu, Yao
    Thakur, Chitra
    Bi, Zhuoyue
    Wadgaonkar, Priya
    Qiu, Yiran
    Xu, Liping
    Rice, M'Kya
    Zhang, Wenxuan
    Almutairy, Bandar
    Chen, Fei
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 528 (01) : 54 - 61
  • [44] Are we immune to Gene Scissors CRISPR-Cas9?
    不详
    DIABETOLOGE, 2019, 15 (01): : 42 - 42
  • [45] CRISPR-Cas9 gene editing for patients with haemoglobinopathies
    不详
    LANCET HAEMATOLOGY, 2019, 6 (09): : E438 - E438
  • [46] Putting the brakes on CRISPR-Cas9
    Todorovic, Vesna
    NATURE METHODS, 2017, 14 (02) : 108 - 108
  • [47] CRISPR-Cas9: a world first?
    不详
    LANCET, 2018, 392 (10163): : 2413 - 2413
  • [48] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [49] Protein Inhibitors of CRISPR-Cas9
    Bondy-Denomy, Joseph
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 417 - 423
  • [50] Nanoparticles for CRISPR-Cas9 delivery
    Glass, Zachary
    Li, Yamin
    Xu, Qiaobing
    NATURE BIOMEDICAL ENGINEERING, 2017, 1 (11): : 854 - 855