Microcrystalline Cellulose-Based Eraser

被引:1
|
作者
Zhao, Jiaxiang [1 ]
Yang, Guihua [1 ]
Ji, Xingxiang [1 ]
Li, Cong [1 ]
Cai, Xiaoxia [1 ]
Wang, Qiang [1 ]
Liu, Yanshao [2 ,3 ]
Zhang, Fengshan [2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Peoples R China
[2] Shandong Huatai Paper Co Ltd, Shandong Yellow Triangle Biotechnol Ind Res Inst C, Dongying 257000, Peoples R China
[3] Shandong Yellow Triangle Biotechnol Ind Res Inst C, Dongying 276014, Peoples R China
基金
中国国家自然科学基金;
关键词
microcrystalline cellulose; polyurethane; eraser; biodegradability; microplastic; MECHANICAL-PROPERTIES; FLAME RETARDANCY; GRAPHENE OXIDE; COMPOSITES; POLYURETHANE; OIL; NANOCOMPOSITES; GRAPHITE; POLYMERS; STRATEGY;
D O I
10.1021/acssuschemeng.3c07633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Eraser, the most widely used stationery item made of vulcanized rubbers or petroleum-based resins, is too common to draw attention. Its fragments falling off during the erasing process may appear small and insignificant; however, it should be noteworthy that they are in fact microplastics, which are hard to degrade in nature and pose significant threats to the ecological environment. In this work, a microcrystalline cellulose (MCC)-based elastomer was proposed that displays an impressive erasure effect combined with good biodegradability. This special erasure function is attributed to its unique microstructure, in which a very high loading of MCC (75 wt %) was achieved via a planetary centrifugal mixing of MCC and a polyethylene glycol-derived aqueous polyurethane (APE). Scanning electron microscopy (SEM) showed that MCC particles were uniformly coated with APE. Differential scanning calorimetry (DSC) and swelling tests further clarified the specific interactions between APE and MCC. The oriented aggregation principle and Young's equation were employed to describe the erasure behavior and elucidate the underlying mechanism. It indicated that APE played a key role in transferring pencil lead powders from paper to the eraser. SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) indicated that MCC played another key role in facilitating the removal of pencil shavings from the eraser's surface. This work provides a feasible thought for fabricating an "eco-eraser" based on commercially available MCC, which shows great potential in reducing the harm of eraser microplastics on the ecological environment and develops a brand new application of cellulose in composite materials.
引用
收藏
页码:4887 / 4899
页数:13
相关论文
共 50 条
  • [41] Gel based on microcrystalline cellulose and azidin
    Shoikulov, BB
    Nabiev, DS
    Mirzakhidov, KA
    Burkhanova, NZ
    Nikonovich, GV
    Musaev, UN
    CHEMISTRY OF NATURAL COMPOUNDS, 1999, 35 (05) : 508 - 510
  • [42] Cellulose-based biodegradable polymeric surfactants
    Talaba, P
    Srokova, I
    Ebringerova, A
    Hodul, P
    Marcincin, A
    JOURNAL OF CARBOHYDRATE CHEMISTRY, 1997, 16 (4-5) : 573 - 582
  • [43] Water sorption in cellulose-based hydrogels
    Esposito, F
    DelNobile, MA
    Mensitieri, G
    Nicolais, L
    JOURNAL OF APPLIED POLYMER SCIENCE, 1996, 60 (13) : 2403 - 2407
  • [44] Construction and application of cellulose-based hydrogel
    Cui, Yexuan
    Tong, Yana
    Liu, Weidong
    Li, Zheng
    Gong, Jixian
    Qiao, Changsheng
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2023, 51 (09): : 37 - 51
  • [45] Cellulose-Based Solid Fluorescent Materials
    Tian, Weiguo
    Zhang, Jinming
    Yu, Jian
    Wu, Jin
    Nawaz, Haq
    Zhang, Jun
    He, Jiasong
    Wang, Fosong
    ADVANCED OPTICAL MATERIALS, 2016, 4 (12): : 2044 - 2050
  • [46] Liquid crystalline cellulose-based nematogels
    Liu, Qingkun
    Smalyukh, Ivan I.
    SCIENCE ADVANCES, 2017, 3 (08):
  • [47] Research progress of cellulose-based hydrogels
    Shen J.
    Fu S.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (06): : 3022 - 3037
  • [48] Cellulose-Based Scaffolds for Tissue Engineering
    Afshang, Amir
    Jalali, Somayeh
    Amiryaghoubi, Nazanin
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2024, 43 (02): : 499 - 521
  • [49] Cellulose-based Conductive Materials for Bioelectronics
    Saleh, Ahmed K.
    El-Sayed, Mohamed H.
    El-Sakhawy, Mohamed A.
    Alshareef, Shareefa Ahmed
    Omer, Noha
    Abdelaziz, Mahmoud A.
    Jame, Rasha
    Zheng, Hongjun
    Gao, Mengge
    Du, Haishun
    CHEMSUSCHEM, 2025, 18 (06)
  • [50] Cellulose-based electrospun nanofibers: a review
    Jonas Kerwald
    Celso Fidelis de Moura Junior
    Emanuelle Dantas Freitas
    João de Deus Pereira de Moraes Segundo
    Rodrigo Silveira Vieira
    Marisa Masumi Beppu
    Cellulose, 2022, 29 : 25 - 54