Generalized Cesàro operators in weighted Banach spaces of analytic functions with sup-norms

被引:1
|
作者
Albanese, Angela A. [1 ]
Bonet, Jose [2 ]
Ricker, Werner J. [3 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, CP 193, I-73100 Lecce, Italy
[2] Inst Univ Matemat Pura & Aplicada IUMPA, Univ Politecn Valencia, Cubo F, Valencia 46071, Spain
[3] Katholische Univ Eichstatt Ingolstadt, Math Geogr Fak, D-85072 Eichstatt, Germany
关键词
Generalized Cesaro operator; Weighted Banach spaces of analytic functions; Compact operator; Spectrum; Supercyclic; Mean ergodic; Power bounded; CESA RO OPERATOR; SERIES;
D O I
10.1007/s13348-024-00437-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An investigation is made of the generalized Cesaro operators Ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_t$$\end{document}, for t is an element of[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,1]$$\end{document}, when they act on the space H(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({{\mathbb {D}}})$$\end{document} of holomorphic functions on the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {D}}}$$\end{document}, on the Banach space H infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>\infty $$\end{document} of bounded analytic functions and on the weighted Banach spaces Hv infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_v<^>\infty $$\end{document} and Hv0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_v<^>0$$\end{document} with their sup-norms. Of particular interest are the continuity, compactness, spectrum and point spectrum of Ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_t$$\end{document} as well as their linear dynamics and mean ergodicity.
引用
收藏
页数:20
相关论文
共 50 条