Multi-scale modelling for optimization of process parameters of laser powder bed fusion processed Inconel 718 surrogate part

被引:5
|
作者
Shrivastava, Abhishek [1 ]
Kumar, S. Anand [1 ]
Rao, Samrat [1 ]
机构
[1] Indian Inst Technol Jammu, Dept Mech Engn, Addit Mfg Res Lab, Jammu, India
关键词
Laser powder bed fusion (LPBF); Multi -scale thermo-mechanical model; Taguchi analysis; ANOVA; Volumetric energy density (VED); Residual stress; Distortion; INTRINSIC HEAT-TREATMENT; RESIDUAL-STRESS; THERMOMECHANICAL MODEL; THERMAL-CONDUCTIVITY; DISTORTION; EVOLUTION; NANOPRECIPITATION; HETEROGENEITY; PERFORMANCE; VALIDATION;
D O I
10.1016/j.engfailanal.2023.107713
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work uses an analytical and multi-scale thermo-mechanical numerical model to optimise the process parameter to prevent porosity while reducing the distortion in the surrogate part. Taguchi's experimental design technique was used to identify the effect of process parameters on melt pool evolution. A dimensionless relative melt pool depth ratio (d*) ensures the extent of densification in the simulated part for various processing parameters. The Taguchi analysis outcome revealed an increase in d*, solid ratio, residual stress and distortion with increased laser power while a contrary effect with increased hatch spacing and scan speed. A strong interaction is observed for melt pool metrics and residual stress evolution. However, the interactions for re-sidual stress and distortion evolution are more prominent, showing the influence of process pa-rameters on energy density and thermal gradient evolution. The ANOVA analysis also shows a strong influence of process parameters on melt pool development and residual stress evolution. However, for solid ratio development, scan speed shows an insignificant effect. These observa-tions from meso-scale analysis aids in process parameter selection for defect free part fabrication. A reduction in the VED reduced the magnitude of accumulated residual stresses in the surrogate component, thereby reducing the maximum distortion in the part. A decrease of 8.33 % in maximum distortion is observed for a similar to 20 % reduction in the VED.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Influence of burnishing process on surface integrity of inconel 718 fabricated by laser powder bed fusion additive manufacturing
    Kaya, Mert
    Yaman, Nihal
    Tascioglu, Emre
    Kaynak, Yusuf
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (02): : 335 - 343
  • [42] Evaluation of Inconel 718 Metallic Powder to Optimize the Reuse of Powder and to Improve the Performance and Sustainability of the Laser Powder Bed Fusion (LPBF) Process
    Gruber, Konrad
    Smolina, Irina
    Kasprowicz, Marcin
    Kurzynowski, Tomasz
    MATERIALS, 2021, 14 (06)
  • [43] Mechanical Behavior of Laser Powder Bed Fusion Processed Inconel 625 Alloy
    K. S. N. Satish Idury
    V. Chakkravarthy
    R. L. Narayan
    Transactions of the Indian National Academy of Engineering, 2021, 6 (4) : 975 - 990
  • [44] Additive manufacturing of Inconel 718/CuCrZr multi-metallic materials fabricated by laser powder bed fusion
    Zhang, Lizheng
    Dong, Peng
    Zeng, Yong
    Yao, Haihua
    Chen, Jimin
    ADDITIVE MANUFACTURING, 2024, 92
  • [45] Milling of Inconel 718 block supports fabricated using laser powder bed fusion
    Tripathi, Varad
    Armstrong, Andrew
    Gong, Xi
    Manogharan, Guha
    Simpson, Timothy
    De Meter, Edward
    JOURNAL OF MANUFACTURING PROCESSES, 2018, 34 : 740 - 749
  • [46] On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion
    Caiazzo, Fabrizia
    Alfieri, Vittorio
    Casalino, Giuseppe
    MATERIALS, 2020, 13 (03)
  • [47] Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion
    Bhuwal, Akash Singh
    Pang, Yong
    Maskery, Ian
    Ashcroft, Ian
    Sun, Wei
    Liu, Tao
    ADVANCED ENGINEERING MATERIALS, 2023,
  • [48] Prototyping of nuclear fuel assembly parts by laser powder bed fusion of Inconel 718
    Jeong, Sang Guk
    Kim, Eun Seong
    Ahn, Soung Yeoul
    Chun, Joo Hong
    Ryu, Joo Young
    Woo, Han Gil
    Yoo, Sang Hun
    Kang, Suk Hoon
    Kim, Hyoung Seop
    PROGRESS IN NUCLEAR ENERGY, 2025, 184
  • [49] Multi-scale simulation approach for the prediction of overheating under consideration of process parameters in powder bed fusion of metals using a laser beam
    Rauner, Dominik
    Beuerlein, Kai-Uwe
    Zhang, Ruihao
    Zaeh, Michael F.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2025, 338
  • [50] Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion
    Watring, Dillon S.
    Carter, Kristen C.
    Crouse, Dustin
    Raeymaekers, Bart
    Spear, Ashley D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 761