Understanding the molecular mechanism of Ginkgo Folium-Forsythiae Fructus for cerebral atherosclerosis treatment using network pharmacology and molecular docking

被引:1
|
作者
Zhang, Jinfei [1 ]
Gai, Jialin [1 ]
Ma, Hengqin [1 ]
Tang, Jiqin [1 ,4 ]
Yang, Chuntao [2 ]
Zu, Guoxiu [3 ]
机构
[1] Shandong Univ Tradit Chinese Med, Dept Rehabil Med, Jinan, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Hosp Management Off, Jinan, Peoples R China
[3] Shandong Univ Tradit Chinese Med, Dept Tradit Chinese Med, Jinan, Peoples R China
[4] Shandong Univ Tradit Chinese Med, Dept Rehabil Med, Jinan 250355, Peoples R China
关键词
cerebral atherosclerosis; Forsythiae Fructus; Ginkgo Folium; mechanism; network pharmacology; INTRACRANIAL ATHEROSCLEROSIS; INFLAMMATION; DISEASE; CYTOSCAPE; EXTRACT; STROKE;
D O I
10.1097/MD.0000000000032823
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background:Cerebral atherosclerosis (CA) is a chronic disease caused by multiple infarcts and atrophy causing nerve degenerative syndrome. Ginkgo Folium (GF) and Forsythiae Fructus (FF) have shown positive effects on vascular protection, but their relationship with CA is unclear. This study aimed to identify the potential CA targets and mechanisms of action of GF-FF, using network pharmacology. Objective:This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of GF-FF on CA. Methods:Using the traditional Chinese medicine systems pharmacology database and analysis platform, components were screened and corresponding targets were predicted using boundary values and Swiss Target Prediction. Using Cytoscape 3.8.0, a network was established between GF-FF components and CA targets. We extracted disease genes and constructed a network of targets based on the protein-protein interaction networks functional enrichment analysis database. Using Metascape, the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes of the enriched targets were determined. AutoDock Vina was used to perform molecular docking. Results:Twenty-three active ingredients of GF-FF were confirmed to treat CA, covering 109 targets, of which 48 were CA-related. Luteolin, bicuculline, sesamin, kaempferol, quercetin, and ginkgolide B were the vital active compounds, and EGFR, CYP2E1, CREB1, CYP19A1, PTGS2, PPARG, PPARA, ESR1, MMP9, MAPK14, MAPK8, and PLG were the major targets. The molecular docking showed that these compounds and targets exhibited good intercalation. These 48 protein targets produced effects on CA by modulating pathways such as "apoptosis-multiple species," "IL-17 signaling pathway," and "relaxin signaling pathway." Conclusions:As predicted by network pharmacology, GF-FF exerts anti-tumor effects through multiple components and targets for treatment of CA, providing new clinical ideas for CA treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Potential active compounds and molecular mechanism of Xuefu Zhuyu decoction for atherosclerosis, based on network pharmacology and molecular docking
    Li, Yingyun
    Liu, Boyu
    Liu, Lin
    Xu, Qing
    Shen, Quan
    Li, Weikang
    Zhao, Jingshan
    MEDICINE, 2022, 101 (32) : E29654
  • [32] Study on mechanism of iridoid glycosides derivatives from Fructus Gardeniae in treatment of hepatic encephalopathy by network pharmacology and molecular docking technology
    Liu, Fangzhou
    Li, Meng
    Li, Yuanbai
    Du, Yu
    Li, Yihao
    Yang, Yang
    MEDICINE, 2025, 104 (01)
  • [33] Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking
    Zhao, Yilong
    Liu, Bohao
    Li, Yixing
    Chen, Zhe
    Zhu, Xingzhuo
    Tao, Runyi
    Wang, Zhiyu
    Wang, Hongyi
    Zhang, Yanpeng
    Yan, Shuguang
    Gong, Qiuyu
    Zhang, Guangjian
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (27) : 2161 - 2176
  • [34] Exploration of the Molecular Mechanism of Polygonati Rhizoma in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking
    Zhao, Jinlong
    Lin, Fangzheng
    Liang, Guihong
    Han, Yanhong
    Xu, Nanjun
    Pan, Jianke
    Luo, Minghui
    Yang, Weiyi
    Zeng, Lingfeng
    FRONTIERS IN ENDOCRINOLOGY, 2022, 12
  • [35] Study on the mechanism of ErtongKe granules in the treatment of cough using network pharmacology and molecular docking technology
    Chen, Yu-Long
    Li, Wei-Xia
    Zhang, Hui
    Wang, Xiao-Yan
    Zhang, Shu-Qi
    Zhang, Ming-Liang
    Han, Jun
    Li, Kun
    Feng, Ke-Ran
    Chen, Xiao-Fei
    Tang, Jin-Fa
    ANNALS OF PALLIATIVE MEDICINE, 2021, 10 (11) : 11415 - 11429
  • [36] Mechanisms of wogonoside in the treatment of atherosclerosis based on network pharmacology, molecular docking, and experimental validation
    Gong, Zhaohui
    Yang, Haixin
    Gao, Li
    Liu, Yi
    Chu, Qingmin
    Luo, Chuanjin
    Kang, Liang
    Zhai, Huiqi
    Xu, Qiang
    Wu, Wei
    Li, Nan
    Li, Rong
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2025, 25 (01)
  • [37] Using network pharmacology and molecular docking verification to explore the mechanism of ursolic acid in the treatment of osteoporosis
    Yang, Bowen
    Zhu, Qiuwen
    Wang, Xiaodong
    Mao, Jingxin
    Zhou, Shuqing
    MEDICINE, 2022, 101 (49) : E32222
  • [38] To explore the molecular mechanism of Ginkgo biloba combined with wild chrysanthemum in anti-periodontitis based on network pharmacology and molecular docking
    Lin, Zesheng
    Peng, Wen
    Cai, Chunan
    Shu, Songjie
    Luo, Xinnan
    Sun, Liuqing
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 1191 - 1199
  • [39] Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation
    Chen, Xu
    Sun, Bo
    Zeng, Jia
    Yu, Zhangtao
    Liu, Jie
    Tan, Zhiguo
    Li, Yuhang
    Peng, Chuang
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (08) : 5789 - 5806
  • [40] Investigating the molecular mechanism of iguratimod act on SLE using network pharmacology and molecular docking analysis
    Zeng, Huiqiong
    Chen, Shuai
    Lu, Xiaoping
    Yan, Zhenbo
    FRONTIERS IN BIOINFORMATICS, 2022, 2