On the Niho Type Locally-APN Power Functions and Their Boomerang Spectrum

被引:2
|
作者
Xie, Xi [1 ]
Mesnager, Sihem [2 ,3 ,4 ]
Li, Nian [5 ]
He, Debiao [6 ,7 ]
Zeng, Xiangyong [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[2] Univ Paris 08, Dept Math, F-93526 Paris, France
[3] Univ Sorbonne Paris Nord, CNRS, UMR 7539, Lab Anal Geometry & Applicat LAGA, F-93430 Villetaneuse, France
[4] Telecom Paris, F-91120 Palaiseau, France
[5] Hubei Univ, Sch Cyber Sci & Technol, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[6] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[7] Matrix Elements Technol, Shanghai Key Lab Privacy Preserving Computat, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金;
关键词
Ciphers; Resistance; Toy manufacturing industry; Telecommunications; Technological innovation; Resists; Indexes; Power function; differential spectrum; APN function; locally-APN function; boomerang spectrum; block cipher; symmetric cryptography; PERFECT NONLINEAR FUNCTIONS; PERMUTATION; POLYNOMIALS; UNIFORMITY;
D O I
10.1109/TIT.2022.3232362
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on the so-called locally-APN power functions introduced by Blondeau, Canteaut and Charpin, which generalize the well-known notion of APN functions and possibly more suitable candidates against differential attacks. Specifically, given two coprime positive integers m and k such that gcd(2m + 1, 2k + 1) = 1, we investigate the locallyAPN-ness property of the Niho type power function F (x) = xs(2m- 1)+1 over the finite field F 22m for s = ( 2 k + 1)-1, where (2k + 1)-1 denotes the multiplicative inverse modulo 2m + 1. By employing finer studies of the number of solutions of certain equations over finite fields, we prove that F (x) is locallyAPN and determine its differential spectrum. We emphasize that computer experiments show that this class of locally-APN power functions covers all Niho type locally-APN power functions for 2 <= m <= 10. In addition, we also determine the boomerang spectrum of F (x) by using its differential spectrum, which particularly generalizes a recent result by Yan, Zhang and Li.
引用
收藏
页码:4056 / 4064
页数:9
相关论文
共 50 条
  • [41] Model-independent primordial power spectrum from MAXIMA, BOOMERANG, and DASI data
    Wang, Y
    Mathews, GJ
    ASTROPHYSICAL JOURNAL, 2002, 573 (01): : 1 - 6
  • [42] A measurement of the angular power spectrum of the CMB temperature anisotropy from the 2003 flight of BOOMERANG
    Jones, W. C.
    Ade, P. A. R.
    Bock, J. J.
    Bond, J. R.
    Borrill, J.
    Boscaleri, A.
    Cabella, P.
    Contaldi, C. R.
    Crill, B. P.
    De Bernardis, P.
    De Gasperis, G.
    De Oliveira-Costa, A.
    De Troia, G.
    Di Stefano, G.
    Hivon, E.
    Jaffe, A. H.
    Kisner, T. S.
    Lange, A. E.
    MacTavish, C. J.
    Masi, S.
    Mauskopf, P. D.
    Melchiorri, A.
    Montroy, T. E.
    Natoli, P.
    Netterfield, C. B.
    Pascale, E.
    Piacentini, F.
    Pogosyan, D.
    Polenta, G.
    Prunet, S.
    Ricciardi, S.
    Romeo, G.
    Ruhl, J. E.
    Santini, P.
    Tegmark, M.
    Veneziani, M.
    Vittorio, N.
    ASTROPHYSICAL JOURNAL, 2006, 647 (02): : 823 - 832
  • [43] On the higher-order nonlinearity of a Boolean bent function class (Constructed via Niho power functions)
    Kezia Saini
    Manish Garg
    Cryptography and Communications, 2022, 14 : 1055 - 1066
  • [44] Quantitative type theorems in the space of locally integrable functions
    Aral, Ali
    Ozsarac, Firat
    Yilmaz, Basar
    POSITIVITY, 2022, 26 (03)
  • [45] On Korovkin Type Theorem in the Space of Locally Integrable Functions
    A. D. Gadjiev
    R. O. Efendiyev
    E. İbikli
    Czechoslovak Mathematical Journal, 2003, 53 : 45 - 53
  • [46] On Korovkin type theorem in the space of locally integrable functions
    Gadjiev, AD
    Efendiyev, RO
    Ibikli, E
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (01) : 45 - 53
  • [47] Quantitative type theorems in the space of locally integrable functions
    Ali Aral
    Firat Ozsarac
    Basar Yilmaz
    Positivity, 2022, 26
  • [48] ON THE EXPONENTS OF APN POWER FUNCTIONS AND SIDON SETS, SUM-FREE SETS, AND DICKSON POLYNOMIALS
    Carlet, Claude
    Picek, Stjepan
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (06) : 1507 - 1525
  • [49] A note on the differential spectrum of a class of power functions
    Li, Nian
    Wu, Yanan
    Zeng, Xiangyong
    Tang, Xiaohu
    2022 10TH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2022, : 131 - 135
  • [50] Measurement of a peak in the cosmic microwave background power spectrum from the North American test flight of Boomerang
    Mauskopf, PD
    Ade, PAR
    de Bernardis, P
    Bock, JJ
    Borrill, J
    Boscaleri, A
    Crill, BP
    DeGasperis, G
    De Troia, G
    Farese, P
    Ferreira, PG
    Ganga, K
    Giacometti, M
    Hanany, S
    Hristov, VV
    Iacoangeli, A
    Jaffe, AH
    Lange, AE
    Lee, AT
    Masi, S
    Melchiorri, A
    Melchiorri, F
    Miglio, L
    Montroy, T
    Netterfield, CB
    Pascale, E
    Piacentini, F
    Richards, PL
    Romeo, G
    Ruhl, JE
    Scannapieco, E
    Scaramuzzi, F
    Stompor, R
    Vittorio, N
    ASTROPHYSICAL JOURNAL, 2000, 536 (02): : L59 - L62