Robust and optimal neighborhood graph learning for multi-view clustering

被引:20
|
作者
Du, Yangfan [1 ]
Lu, Gui-Fu [1 ]
Ji, Guangyan [1 ]
机构
[1] AnHui Polytech Univ, Sch Comp & Informat, Wuhu 241000, Anhui, Peoples R China
关键词
Multi-view clustering; Graph-based clustering; Subspace clustering; Tensor; Rank constraint;
D O I
10.1016/j.ins.2023.02.089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, researchers have proposed many graph-based multi-view clustering (GMC) al-gorithms to solve the multi-view clustering (MVC) problem. However, there are still some limi-tations in the existing GMC algorithm. In these algorithms, a graph is usually constructed to represent the relationship between the samples in a view; however, it cannot represent the relationship very well since it is often preconstructed. In addition, these algorithms ignore the robustness problem of each graph and high-level information between different graphs. Then, in the paper, we propose a novel MVC method, i.e., robust and optimal neighborhood graph learning for MVC (RONGL/MVC). Specifically, we first build an initial graph for each view. However, these initial graphs cannot represent the relationship between the samples in each view well, so we look for the optimal graph with k connected components in the neighborhood of each initial graph, where k is the number of clusters. Then, to improve the robustness of RONGL/MVC, we recon-struct the optimal graph with the self-representation matrix. Furthermore, we stack all the self -representation matrices into a tensor and impose the tensor low-rank constraint, which can maximize consistent features and explore the high-order relationship between optimal graphs. In addition, we provide an optimization strategy by utilizing the Augmented Lagrange Multiplier (ALM) method. Experimental results on several datasets indicate that RONGL/MVC outperforms state-of-the-art methods.
引用
收藏
页码:429 / 448
页数:20
相关论文
共 50 条
  • [41] Multi-view clustering with adaptive anchor and bipartite graph learning
    Zhou, Shibing
    Wang, Xi
    Yang, Mingrui
    Song, Wei
    NEUROCOMPUTING, 2025, 611
  • [42] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543
  • [43] Self-weighted graph learning for multi-view clustering
    Shu, Xiaochuang
    Zhang, Xiangdong
    Wang, Qianqian
    NEUROCOMPUTING, 2022, 501 : 188 - 196
  • [44] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 10
  • [45] Inclusivity induced adaptive graph learning for multi-view clustering
    Zou, Xin
    Tang, Chang
    Zheng, Xiao
    Sun, Kun
    Zhang, Wei
    Ding, Deqiong
    KNOWLEDGE-BASED SYSTEMS, 2023, 267
  • [46] Essential anchor graph learning for incomplete multi-view clustering
    Song, Peng
    Mu, Jinshuai
    Cheng, Yuanbo
    Liu, Zhaohu
    Zheng, Wenming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [47] Multi-view Contrastive Graph Clustering
    Pan, Erlin
    Kang, Zhao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [48] Metric Multi-View Graph Clustering
    Tan, Yuze
    Liu, Yixi
    Wu, Hongjie
    Lv, Jiancheng
    Huang, Shudong
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9962 - 9970
  • [49] Graph Learning With Riemannian Optimization for Multi-View Integrative Clustering
    Khan, Aparajita
    Maji, Pradipta
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 381 - 393
  • [50] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344