Robust and optimal neighborhood graph learning for multi-view clustering

被引:20
|
作者
Du, Yangfan [1 ]
Lu, Gui-Fu [1 ]
Ji, Guangyan [1 ]
机构
[1] AnHui Polytech Univ, Sch Comp & Informat, Wuhu 241000, Anhui, Peoples R China
关键词
Multi-view clustering; Graph-based clustering; Subspace clustering; Tensor; Rank constraint;
D O I
10.1016/j.ins.2023.02.089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, researchers have proposed many graph-based multi-view clustering (GMC) al-gorithms to solve the multi-view clustering (MVC) problem. However, there are still some limi-tations in the existing GMC algorithm. In these algorithms, a graph is usually constructed to represent the relationship between the samples in a view; however, it cannot represent the relationship very well since it is often preconstructed. In addition, these algorithms ignore the robustness problem of each graph and high-level information between different graphs. Then, in the paper, we propose a novel MVC method, i.e., robust and optimal neighborhood graph learning for MVC (RONGL/MVC). Specifically, we first build an initial graph for each view. However, these initial graphs cannot represent the relationship between the samples in each view well, so we look for the optimal graph with k connected components in the neighborhood of each initial graph, where k is the number of clusters. Then, to improve the robustness of RONGL/MVC, we recon-struct the optimal graph with the self-representation matrix. Furthermore, we stack all the self -representation matrices into a tensor and impose the tensor low-rank constraint, which can maximize consistent features and explore the high-order relationship between optimal graphs. In addition, we provide an optimization strategy by utilizing the Augmented Lagrange Multiplier (ALM) method. Experimental results on several datasets indicate that RONGL/MVC outperforms state-of-the-art methods.
引用
收藏
页码:429 / 448
页数:20
相关论文
共 50 条
  • [1] Robust Graph Learning for Multi-view Clustering
    Huang, Yixuan
    Xiao, Qingjiang
    Du, Shiqiang
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7331 - 7336
  • [2] Robust Joint Graph Learning for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 722 - 734
  • [3] Incomplete multi-view clustering by simultaneously learning robust representations and optimal graph structures
    Shang, Mingchao
    Liang, Cheng
    Luo, Jiawei
    Zhang, Huaxiang
    INFORMATION SCIENCES, 2023, 640
  • [4] Learning robust affinity graph representation for multi-view clustering
    Jing, Peiguang
    Su, Yuting
    Li, Zhengnan
    Nie, Liqiang
    INFORMATION SCIENCES, 2021, 544 : 155 - 167
  • [5] Robust and Consistent Anchor Graph Learning for Multi-View Clustering
    Liu, Suyuan
    Liao, Qing
    Wang, Siwei
    Liu, Xinwang
    Zhu, En
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4207 - 4219
  • [6] Multi-view clustering via robust consistent graph learning
    Wang, Changpeng
    Geng, Li
    Zhang, Jiangshe
    Wu, Tianjun
    DIGITAL SIGNAL PROCESSING, 2022, 128
  • [7] Essential multi-view graph learning for clustering
    Shuangxun Ma
    Qinghai Zheng
    Yuehu Liu
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 5225 - 5236
  • [8] Essential multi-view graph learning for clustering
    Ma, Shuangxun
    Zheng, Qinghai
    Liu, Yuehu
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 13 (11) : 5225 - 5236
  • [9] Multi-view projected clustering with graph learning
    Gao, Quanxue
    Wan, Zhizhen
    Liang, Ying
    Wang, Qianqian
    Liu, Yang
    Shao, Ling
    NEURAL NETWORKS, 2020, 126 (126) : 335 - 346
  • [10] Consensus Graph Learning for Multi-View Clustering
    Li, Zhenglai
    Tang, Chang
    Liu, Xinwang
    Zheng, Xiao
    Zhang, Wei
    Zhu, En
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2461 - 2472