Triplet-trained graph transformer with control flow graph for few-shot malware classification

被引:4
|
作者
Bu, Seok-Jun [1 ]
Cho, Sung-Bae [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul 03722, South Korea
关键词
Malware classification; Few -shot learning; Control flow graph; Transformer network; Triplet network;
D O I
10.1016/j.ins.2023.119598
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The exponential proliferation of malware requires robust detection mechanisms for the security of global enterprises and national infrastructures. Conventional malware classification methods primarily depend on extensive datasets of curated malware samples, rendering them suboptimal for detecting novel strains exploiting contemporary vulnerabilities. In this paper, we reformulate malware detection as a few-shot learning task, and propose a new distance-based classification method that harnesses the innate functional attributes of malware to mitigate the dependency on sample volume. A disentangled representation of the malware's control flow graph is exploited, and a specialized transformer architecture is trained with a triplet-loss function, aiming to finetune the representation of malicious attributes. An attention mechanism of the transformer judiciously discerns functional signatures from intricate control flow graphs. Empirical evaluations on real-world malware datasets underscore the efficacy of the proposed method, achieving an outstanding recall rate of 83.37% with mere 2,000 training samples. As a result, our method outperforms the state-of-the-art methods with an accuracy of 99.45% and a recall of 97.89%.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Transductive Graph-Attention Network for Few-shot Classification
    Pan, Lili
    Liu, Weifeng
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 190 - 195
  • [12] Category Decoupled Few-Shot Classification for Graph Neural Network
    Deng, Gelong
    Huang, Guoheng
    Chen, Ziyan
    Computer Engineering and Applications, 2024, 60 (02) : 129 - 136
  • [13] Learning Hierarchical Task Structures for Few-shot Graph Classification
    Wang, Song
    Dong, Yushun
    Huang, Xiao
    Chen, Chen
    Li, Jundong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (03)
  • [14] Few-Shot Audio Classification with Attentional Graph Neural Networks
    Zhang, Shilei
    Qin, Yong
    Sun, Kewei
    Lin, Yonghua
    INTERSPEECH 2019, 2019, : 3649 - 3653
  • [15] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [16] Graph Complemented Latent Representation for Few-Shot Image Classification
    Zhong, Xian
    Gu, Cheng
    Ye, Mang
    Huang, Wenxin
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1979 - 1990
  • [17] Generalized Few-Shot Node Classification With Graph Knowledge Distillation
    Wang, Jialong
    Zhou, Mengting
    Zhang, Shilong
    Gong, Zhiguo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 11
  • [18] Adaptive-Step Graph Meta-Learner for Few-Shot Graph Classification
    Ma, Ning
    Bu, Jiajun
    Yang, Jieyu
    Zhang, Zhen
    Yao, Chengwei
    Yu, Zhi
    Zhou, Sheng
    Yan, Xifeng
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1055 - 1064
  • [19] TransAM: Transformer appending matcher for few-shot knowledge graph completion
    Liang, Yi
    Zhao, Shuai
    Cheng, Bo
    Yang, Hao
    NEUROCOMPUTING, 2023, 537 : 61 - 72
  • [20] Few-Shot Knowledge Graph Completion
    Zhang, Chuxu
    Yao, Huaxiu
    Huang, Chao
    Jiang, Meng
    Li, Zhenhui
    Chawla, Nitesh, V
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3041 - 3048