A novel advanced absorption heat pump (Type III) for cooling and heating using low-grade waste heat

被引:7
|
作者
Huicochea, A. [1 ]
机构
[1] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas, Cuernavaca, Mexico
关键词
Cooling; Heating; Absorption heat pump; Advanced absorption cycles; Energy saving; Absorption heat transformer; Water; lithium bromide; THERMODYNAMIC DESIGN-DATA; LITHIUM BROMIDE; PERFORMANCE; TRANSFORMER; RECOVERY;
D O I
10.1016/j.energy.2023.127938
中图分类号
O414.1 [热力学];
学科分类号
摘要
The heat of low-grade can be used to get cooling and heating simultaneously by using the coupling of two absorption heat pumps (conventional/not conventional). This novel advanced absorption heat pump requires three pressure levels to increase and reduce the temperature of useful heat, where desorption/condensation processes are shared at medium pressure, and the two evaporation/absorption processes are developed at low and high pressure respectively. The aim of this proposal is to study this kind of advanced absorption heat pump (Type III) by using the first and second laws of thermodynamics, to determine the energy and exergy coefficient of performances for the whole system by taking into account three scenarios of heat flux rates for both evaporators. The irreversibility and exergy performances for the main components are determined to improve the exergy coefficient of performance. The understanding of reversible Carnot cycles, and the general relationship of energy coefficient of performances at low, medium, and high temperatures for this proposal are analyzed. This advanced absorption heat pump reaches cooling temperatures from 14 to 20 degrees C and heating temperatures between 80 and 106 degrees C using water/lithium bromide as a working solution. The energy coefficient of performance of 0.68 is obtained when the higher thermal load of the cooling evaporator than the heating evaporator.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Advanced Exergy Analysis of an Absorption Chiller/Kalina Cycle Integrated System for Low-Grade Waste Heat Recovery
    Liu, Zhiqiang
    Zeng, Zhixiang
    Deng, Chengwei
    Xie, Nan
    PROCESSES, 2022, 10 (12)
  • [22] Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery
    Cao, Xing-Qi
    Yang, Wei-Wei
    Zhou, Fu
    He, Ya-Ling
    APPLIED THERMAL ENGINEERING, 2014, 71 (01) : 291 - 300
  • [23] Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery
    Mateu-Ryo, Carlos
    Navarro-Esbri, Joaquin
    Mota-Babiloni, Adrian
    Amat-Albuixech, Marta
    Moles, Francisco
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 90 : 229 - 237
  • [24] Analysis of Low-Grade Waste Heat Driven Systems for Cooling and Power for Tropical Climate
    Riaz, Fahid
    Lee, Poh Seng
    Chou, Saiw Kiang
    Ranjan, Ravi
    Tay, Cher Seng
    Soe, Thazin
    LEVERAGING ENERGY TECHNOLOGIES AND POLICY OPTIONS FOR LOW CARBON CITIES, 2017, 143 : 389 - 395
  • [25] Low-grade waste heat recovery using the reverse magnetocaloric effect
    Kishore, Ravi Anant
    Priya, Shashank
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (09): : 1899 - 1908
  • [26] Optimal water purification using low grade waste heat In an absorption heat transformer
    Romero, Rosenberg J.
    Rodriguez-Martinez, A.
    DESALINATION, 2008, 220 (1-3) : 506 - 513
  • [27] Optimal design of heat pump integrated low-grade heat utilization systems
    Hu, Jianqing
    Fan, Shanshan
    Zhang, Bingjian
    He, Chang
    Liu, Zuming
    Chen, Qinglin
    ENERGY CONVERSION AND MANAGEMENT, 2022, 260
  • [28] Advanced exergy and exergoeconomic analyses of a cascade absorption heat transformer for the recovery of low grade waste heat
    Wang, Yinglong
    Liu, Yigang
    Liu, Xiaobin
    Zhang, Wanxiang
    Cui, Peizhe
    Yu, Mengxiao
    Liu, Zhiqiang
    Zhu, Zhaoyou
    Yang, Sheng
    ENERGY CONVERSION AND MANAGEMENT, 2020, 205
  • [29] New configurations of absorption heat transformer and refrigeration combined system for low-temperature cooling driven by low-grade heat
    Liu, Zijian
    Lu, Ding
    Shen, Tao
    Guo, Hao
    Bai, Yin
    Wang, Ligang
    Gong, Maoqiong
    APPLIED THERMAL ENGINEERING, 2023, 228
  • [30] Experimental study on a bifunctional heat utilization system of heat pump and power generation using low-grade heat source
    He, Zhonglu
    Zhang, Yufeng
    Wu, Zhangxiang
    Ma, Hongting
    Dong, Shengming
    APPLIED THERMAL ENGINEERING, 2017, 124 : 71 - 82