Classical Quantum Friction at Water-Carbon Interfaces

被引:30
|
作者
Bui, Anna T. [1 ]
Thiemann, Fabian L. [1 ,2 ,3 ,4 ]
Michaelides, Angelos [1 ]
Cox, Stephen J. [1 ]
机构
[1] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[2] UCL, London Ctr Nanotechnol, Thomas Young Ctr, London WC1E 6BT, England
[3] UCL, Dept Phys & Astron, London WC1E 6BT, England
[4] Imperial Coll London, Sargent Ctr Proc Syst Engn, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
liquid-solid friction; nanoscale water; liquid-solid interfaces; graphene; molecular dynamics; MOLECULAR-DYNAMICS; INDUCED POLARIZATION; MASS-TRANSPORT; BORON-NITRIDE; LIQUID WATER; ENERGY; FLOW; NANOTUBES; GRAPHENE; DESALINATION;
D O I
10.1021/acs.nanolett.2c04187
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Friction at water-carbon interfaces remains a major puzzle with theories and simulations unable to explain experimental trends in nanoscale waterflow. A recent theoretical framework -quantum friction (QF)-proposes to resolve these experimental observations by considering nonadiabatic coupling between dielectric fluctuations in water and graphitic surfaces. Here, using a classical model that enables fine-tuning of the solid's dielectric spectrum, we provide evidence from simulations in general support of QF. In particular, as features in the solid's dielectric spectrum begin to overlap with water's librational and Debye modes, we find an increase in friction in line with that proposed by QF. At the microscopic level, we find that this contribution to friction manifests more distinctly in the dynamics of the solid's charge density than that of water. Our findings suggest that experimental signatures of QF may be more pronounced in the solid's response rather than liquid water's.
引用
收藏
页码:580 / 587
页数:8
相关论文
共 50 条
  • [21] Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling
    Barnes, Mallory L.
    Farella, Martha M.
    Scott, Russell L.
    Moore, David J. P.
    Ponce-Campos, Guillermo E.
    Biederman, Joel A.
    MacBean, Natasha
    Litvak, Marcy E.
    Breshears, David D.
    COMMUNICATIONS EARTH & ENVIRONMENT, 2021, 2 (01):
  • [22] Thermodynamic properties and interfacial tension of a model water-carbon dioxide system
    Kuznetsova, T
    Kvamme, B
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (06) : 937 - 941
  • [23] AB-INITIO CALCULATIONS ON THE WATER-CARBON DIOXIDE SYSTEM
    SADLEJ, J
    MAZUREK, P
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1995, 337 (02): : 129 - 138
  • [24] Intermolecular potential energy surface of the water-carbon dioxide complex
    Makarewicz, Jan
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (23):
  • [25] On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
    Werder, T
    Walther, JH
    Jaffe, RL
    Halicioglu, T
    Koumoutsakos, P
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (06): : 1345 - 1352
  • [26] Circuit connectivity boosts by quantum-classical-quantum interfaces
    Wiersema, Roeland
    Guerini, Leonardo
    Carrasquilla, Juan Felipe
    Aolita, Leandro
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [27] Water-carbon nanotube interactions: Potential energy calibration for molecular dynamics simulations using experiments and quantum system calculations
    Koumoutsakos, P
    Walther, J
    Werder, T
    Zimmerli, U
    Jaffe, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U705 - U705
  • [28] Water-carbon interaction under the conditions of complete and metastable thermodynamic equilibrium
    Pavlov, S. Kh.
    Karpov, I. K.
    Chudnenko, K. V.
    WATER RESOURCES, 2008, 35 (04) : 435 - 445
  • [29] Water-carbon coupling modeling of summer maize at the leaf and canopy scales
    Zhang BaoZhong
    Liu Yu
    Xu Di
    Cai JiaBing
    Wei Zheng
    CHINESE SCIENCE BULLETIN, 2013, 58 (27): : 3361 - 3370
  • [30] Water-carbon interaction under the conditions of complete and metastable thermodynamic equilibrium
    S. Kh. Pavlov
    I. K. Karpov
    K. V. Chudnenko
    Water Resources, 2008, 35