High-Performance La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte-Based Direct Raw Brown Coal Fuel Cells

被引:6
|
作者
Chen, Xiao [1 ]
Wu, Can [1 ]
Hao, Senran [1 ]
Liu, Boyuan [1 ]
Lu, Tengda [1 ]
Dong, Peng [1 ]
Zhang, Yingjie [1 ]
Xiao, Jie [1 ]
Zeng, Xiaoyuan [1 ]
Zhai, Shuo [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Natl & Local Joint Engn Res Ctr Lithium ion Batter, Key Lab Adv Battery Mat Yunnan Prov, Kunming 650093, Peoples R China
[2] Shenzhen Univ, Inst Deep Earth Sci & Green Energy, Guangdong Prov Key Lab Deep Earth Sci & Geothermal, Shenzhen 518060, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2023年 / 6卷 / 21期
基金
美国国家科学基金会;
关键词
solid oxide fuel cell; direct carbon; all-solid-state; doped lanthanum gallate; raw browncoal; CARBON FUEL; IONIC-CONDUCTIVITY; DOPED LAGAO3; OXIDE; MICROSTRUCTURE; PEROVSKITE; COMPOSITE; ANODE;
D O I
10.1021/acsaem.3c01901
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct carbon solid oxide fuel cell (DC-SOFC) is a potential energy conversion device that cleanly and effectively utilizes various carbon resources to generate electric power through electrochemical conversion. Recently, DC-SOFCs utilizing real-world coal fuel have gained great momentum due to the "dual carbon strategic goals". Here, we report high-performance La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolyte-supported DC-SOFCs, by integrating Ag-Gd0.1Ce0.9O2-delta (GDC) as symmetrical electrodes, which enable highly efficient utilization of raw brown coal as fuel. As a comparison, the performances of the conventional yttria-stabilized zirconia (YSZ) electrolyte supported-DC-SOFCs are also investigated. Fueled by raw brown coal, the LSGM-based cells can deliver a maximum power density of 367 mW cm(-2) at 850 degrees C, which is distinctly superior than that of the YSZ-based cells (249 mW cm(-2)). In addition, stability tests reveal that under a discharge current of 0.15 A, the cell can achieve a discharge time of 4.38 h and a better fuel utilization of 14.8%, indicating that a large current discharge is more propitious for the LSGM-based DC-SOFCs fueled by raw brown coal to achieve higher fuel utilization. This study exhibits the enormous potential of LSGM as an electrolyte material for high-performance direct brown coal fuel cells and provides direction guidance for the optimization of discharge operation of DC-SOFCs directly utilizing brown coal in consideration of fuel utilization.
引用
收藏
页码:11043 / 11050
页数:8
相关论文
共 50 条
  • [31] Operational Inhomogeneities in La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolytes and La0.8Sr0.2Cr0.82Ru0.18O3-δ-Ce0.9Gd0.1O2-δ Composite Anodes for Solid Oxide Fuel Cells
    Liao, Y.
    Bierschenk, D. M.
    Barnett, S. A.
    Marks, L. D.
    FUEL CELLS, 2011, 11 (05) : 635 - 641
  • [32] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    S. L. Reis
    E. N. S. Muccillo
    Ionics, 2018, 24 : 1693 - 1700
  • [33] Effective buffer layer thickness of La-doped CeO2 for high durability and performance on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte supported type solid oxide fuel cells
    Hwang, Kuk-Jin
    Jang, Mi
    Kim, Min Kyu
    Lee, Seok Hee
    Shin, Tae Ho
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (04) : 2674 - 2681
  • [34] High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δ composite film
    Yan, JW
    Matsumoto, H
    Enoki, M
    Ishihara, T
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (08) : A389 - A391
  • [35] La0.8Sr0.2MnO3-La0.9Sr0.1Ga0.8Mg0.2O3 composite cathodes for anode supported solid oxide fuel cells
    Armstrong, TJ
    Prouse, DW
    Virkar, AV
    IONIC AND MIXED CONDUCTING CERAMICS IV, 2002, 2001 (28): : 319 - 327
  • [36] Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathode for solid oxide fuel cell
    Liu, Bangwu
    Zhang, Yue
    Zhang, Limin
    JOURNAL OF POWER SOURCES, 2008, 175 (01) : 189 - 195
  • [38] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ intermediate-temperature electrolyte using conventional solid state reaction
    Li, Minxia
    Zhang, Yaohui
    An, Maozhong
    Lu, Zhe
    Huang, Xiqiang
    Xiao, Juncheng
    Wei, Bo
    Zhu, Xingbao
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2012, 218 : 233 - 236
  • [39] Influence of A-site deficiencies in the system La0.9Sr0.1Ga0.8Mg0.2O3-δ on structure and electrical conductivity
    Runge, H
    Guth, U
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2004, 8 (04) : 272 - 276
  • [40] Fabrication of Solid Oxide Fuel Cells with a Thin (La0.9Sr0.1)0.98(Ga0.8Mg0.2)O3-δ Electrolyte on a Sr0.8La0.2TiO3 Support
    Miller, E. C.
    Gao, Z.
    Barnett, S. A.
    FUEL CELLS, 2013, 13 (06) : 1060 - 1067