Multi-scale triple-attention network for pixelwise crack segmentation

被引:38
|
作者
Yang, Lei [1 ,2 ]
Bai, Suli [1 ,2 ]
Liu, Yanhong [1 ,2 ]
Yu, Hongnian [2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Henan 450001, Peoples R China
[2] Robot Percept & Control Engn Lab Henan Prov, Zhengzhou 450001, Henan, Peoples R China
[3] Edinburgh Napier Univ, Built Environm, Edinburgh EH10 5DT, Scotland
关键词
Pavement crack segmentation; Semantic segmentation; Residual network; Multiscale input strategy; Deep supervision mechanism;
D O I
10.1016/j.autcon.2023.104853
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Currently, intelligent crack detection is of great value for the maintenance of infrastructure, of which the most significant kind in China is roads. For pavement defects, the pavement can be repaired and maintained in a timely manner with an accurate defect detection task, which significantly reduces the occurrence of hazards. However, the detection of pavement defects remains a great challenge owing to many difficulties, for example, complex backgrounds, microdefects, various defect shapes and sizes, class imbalance issues, etc. Recently, deep learning has demonstrated its superior performance on pixelwise image segmentation, but some issues still exist on demanding pixelwise image segmentation, for instance, limited receptive field, insufficiency processing of local features, information loss issue generated by pooling operations, etc. Based on all of the above issues, a multiscale triple-attention network, named MST-Net, is proposed for end-to-end pixelwise crack detection. First, a multiscale input strategy is applied to the proposed segmentation network to capture more context information. Meanwhile, it can capably reduce the effect of the information loss issue generated by pooling operations. Second, to realize effective feature representation of local features, an additive attention fusion (AAF) block is proposed to guide feature learning to capture both global and local contexts. In addition, faced with the crack detection task with class imbalance issues, a triple attention (TA) block is proposed to detect spatial, channel and pixel attention information to suppress the background and useless information, which is conducive to the characterization of microcracks. Finally, aiming at the limited receptive field, a multiscale feature aggregation unit is proposed for feature fusion to increase the detection ability of multiscale defects. To better guide network training, a deep supervision mechanism is also introduced to speed up the convergence of the proposed segmentation model and improve the performance of defect segmentation. The related evaluation and detection experiments are carried out on three public datasets on crack segmentation, and the comparison experiments with the mainstream segmentation models show that the proposed segmentation network achieves excellent performance on pixelwise crack detection.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] GMDNet: An Irregular Pavement Crack Segmentation Method Based on Multi-Scale Convolutional Attention Aggregation
    Qi, Yawei
    Wan, Fang
    Lei, Guangbo
    Liu, Wei
    Xu, Li
    Ye, Zhiwei
    Zhou, Wen
    ELECTRONICS, 2023, 12 (15)
  • [42] ETANet: An Efficient Triple-Attention Network for Salient Object Detection
    Ngo, Thien-Thu
    Huh, Eui-Nam
    Hong, Choong Seon
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 271 - 276
  • [43] Multi-Scale Attention Refinement Retinal Segmentation Algorithm
    Liang, Liming
    Chen, Xin
    Yu, Jie
    Zhou, Longsong
    Computer Engineering and Applications, 2023, 59 (06): : 212 - 220
  • [44] MSPAN: Multi-scale pyramid attention network for efficient skin cancer lesion segmentation
    Ahmed, Noor
    Xin, Tan
    Lizhuang, Ma
    IET IMAGE PROCESSING, 2024, 18 (07) : 1667 - 1680
  • [45] Triple-attention interaction network for breast tumor classification based on multi-modality images
    Yang, Xiao
    Xi, Xiaoming
    Wang, Kesong
    Sun, Liangyun
    Meng, Lingzhao
    Nie, Xiushan
    Qiao, Lishan
    Yin, Yilong
    PATTERN RECOGNITION, 2023, 139
  • [46] Collaborative Attention Guided Multi-Scale Feature Fusion Network for Medical Image Segmentation
    Xu, Zhenghua
    Tian, Biao
    Liu, Shijie
    Wang, Xiangtao
    Yuan, Di
    Gu, Junhua
    Chen, Junyang
    Lukasiewicz, Thomas
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1857 - 1871
  • [47] Label-aware Attention Network with Multi-scale Boosting for Medical Image Segmentation
    Wang, Linbo
    Xu, Peng
    Cao, Xianfeng
    Nappi, Michele
    Wan, Shaohua
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [48] Semantic segmentation network for remote sensing image based on multi-scale mutual attention
    Liu C.-J.
    Qiao Z.
    Yan H.-W.
    Wu X.-S.
    Wang J.-W.
    Xin Y.-Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (07): : 1335 - 1344
  • [49] A Multi-Scale Hybrid Attention Network for Sentence Segmentation Line Detection in Dongba Scripture
    Xing, Junyao
    Bi, Xiaojun
    Weng, Yu
    MATHEMATICS, 2023, 11 (15)
  • [50] A hybrid attention multi-scale fusion network for real-time semantic segmentation
    Ye, Baofeng
    Xue, Renzheng
    Wu, Qianlong
    SCIENTIFIC REPORTS, 2025, 15 (01):