An Enterprise Multi-agent Model with Game Q-Learning Based on a Single Decision Factor

被引:1
|
作者
Xu, Siying [1 ,2 ]
Zhang, Gaoyu [2 ]
Yuan, Xianzhi [3 ]
机构
[1] Shanghai Univ Finance & Econ, Shanghai 200433, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Shanghai 201209, Peoples R China
[3] Chengdu Univ, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
SMEs; Multi-agent; Q-learning; Evolutionary gaming; PRODUCT INNOVATION; EVOLUTIONARY GAME; PROTOCOL;
D O I
10.1007/s10614-023-10524-x
中图分类号
F [经济];
学科分类号
02 ;
摘要
In recent years, the study of enterprise survival development and cooperation in the whole economic market has been rapidly developed. However, in most literature studies, the traditional enterprise multi-agent cannot effectively simulate the process of enterprise survival and development since the fundamental characteristics used to describe enterprises in social networks, such as the values of enterprise multi-agent attributes, cannot be changed in process of the simulation. To address this problem, an enterprise multi-agent model based on game Q- learning to simulate enterprise decision making which aims to maximize the benefits of enterprises and optimize the effect of inter-firm cooperation is proposed in this article. The Firm Q Learning algorithm is used to dynamically change the attribute values of the enterprise multi-agent to optimize the game results in the evolutionary game model and thus effectively simulate the dynamic cooperation among the enterprise agents. The simulation result shows that the evolution of the enterprise multi-agent model based on game Q-learning can more realistically reflect the process of real enterprise survival and development than the multi-agent simulation with fixed attribute values.
引用
收藏
页码:2523 / 2562
页数:40
相关论文
共 50 条
  • [21] Regional Cooperative Multi-agent Q-learning Based on Potential Field
    Liu, Liang
    Li, Longshu
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 6, PROCEEDINGS, 2008, : 535 - 539
  • [22] Study on Statistics Based Q-learning Algorithm for Multi-Agent System
    Xie Ya
    Huang Zhonghua
    2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND ENGINEERING APPLICATIONS, 2013, : 595 - 600
  • [23] Multi-Agent Reinforcement Learning - An Exploration Using Q-Learning
    Graham, Caoimhin
    Bell, David
    Luo, Zhihui
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVI: INCORPORATING APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XVII, 2010, : 293 - 298
  • [24] Q-Learning Policies for Multi-Agent Foraging Task
    Yogeswaran, M.
    Ponnambalam, S. C.
    TRENDS IN INTELLIGENT ROBOTICS, 2010, 103 : 194 - 201
  • [25] Regularized Softmax Deep Multi-Agent Q-Learning
    Pan, Ling
    Rashid, Tabish
    Peng, Bei
    Huang, Longbo
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] Multi-Agent Q-Learning for Drone Base Stations
    Janji, Salim
    Kliks, Adrian
    2023 19TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB, 2023, : 261 - 266
  • [27] QMIMC: Q-Learning Model Based on Imperfect-information under Multi-agent Crowdtesting
    Zhang, Jie
    Li, Kefan
    Zhang, Baoming
    Xu, Ming
    Wang, Chongjun
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 1110 - 1117
  • [28] Constrained predictive control for consensus of nonlinear multi-agent systems by using game Q-learning
    Wang, Yan
    Xue, Huiwen
    Wen, Jiwei
    Liu, Jinfeng
    Luan, Xiaoli
    NONLINEAR DYNAMICS, 2024, : 11683 - 11700
  • [29] Q-Learning based Protection Scheme for Microgrid using Multi-Agent System
    Satuyeva, Botazhan
    Sultankulov, Bekbol
    Nunna, H. S. V. S. Kumar
    Kalakova, Aidana
    Doolla, Suryanarayana
    2019 2ND INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST 2019), 2019,
  • [30] Q-learning Algorithm Based Multi-Agent Coordinated Control Method for Microgrids
    Xi, Yuanyuan
    Chang, Liuchen
    Mao, Meiqin
    Jin, Peng
    Hatziargyriou, Nikos
    Xu, Haibo
    2015 9TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ECCE ASIA (ICPE-ECCE ASIA), 2015, : 1497 - 1504