Disturbance Rejection for Stewart Platform Based on Integration of Equivalent-Input-Disturbance and Sliding-Mode Control Methods

被引:26
|
作者
Zhou, Yujian [1 ,2 ,3 ]
She, Jinhua [4 ]
Wang, Feng [1 ,2 ,3 ]
Iwasaki, Makoto [5 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat, Wuhan 430074, Peoples R China
[3] Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R China
[4] Tokyo Univ Technol, Sch Engn, Hachioji 1920982, Japan
[5] Nagoya Inst Technol, Dept Elect & Mech Engn, Nagoya 4668555, Japan
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Observers; Legged locomotion; Tracking; Switches; Trajectory; Sliding mode control; Mechatronics; Disturbance rejection; equivalent input disturbance (EID); linear matrix equality (LMI); sliding-mode control (SMC); Stewart platform; TRACKING; SYSTEM;
D O I
10.1109/TMECH.2023.3237135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study integrated an improved equivalent-input-disturbance (IEID) and a sliding-mode control (SMC) methods to ensure reference tracking and enhance disturbance-rejection performance for a Stewart platform. The internal principle ensures steady-state tracking of the system. A sliding-mode controller enhances the disturbance-rejection performance and tracking accuracy. The effects of the external disturbances are regarded as an overall disturbance. Then, a state observer and an IEID estimator estimate and compensate for the overall disturbance. The chattering phenomenon when implementing the SMC method is reduced because a small sliding-mode gain ensures the tracking precision in this control method. A stability condition of the closed-loop system is analyzed based on the Lyapunov stability theory. Gains of the IEID estimator and the state observer are designed by a linear matrix inequality that ensures the stability of the system. This method has been verified on an actual Stewart platform. Experimental results show that our method has better disturbance-rejection performance than an SMC method and an IEID method under external disturbances.
引用
收藏
页码:2364 / 2374
页数:11
相关论文
共 50 条
  • [21] A Model-Predictive-Enabled Equivalent-Input-Disturbance Approach for Disturbance Rejection
    Zhou, Yujian
    She, Jinhua
    Wang, Feng
    Iwasaki, Makoto
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [22] Adaptive Equivalent-input-disturbance Approach to Improving Disturbance-rejection Performance
    Ze-Wen Wang
    Jin-Hua She
    Guang-Jun Wang
    International Journal of Automation and Computing, 2020, 17 : 701 - 712
  • [23] Disturbance Rejection for Systems With Uncertainties Based on Fixed-Time Equivalent-Input-Disturbance Approach
    Qun Lu
    Xiang Wu
    Jinhua She
    Fanghong Guo
    Li Yu
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (12) : 2384 - 2395
  • [24] A Method of Improving Disturbance-Rejection Performance for Equivalent-Input-Disturbance Approach
    Yin, Xiang
    Shi, Yuntao
    She, Jinhua
    Zhou, Lan
    Liu, Daqian
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2111 - 2114
  • [25] Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach
    Ruijuan LIU
    Jinhua SHE
    Min WU
    Fenfang ZHU
    Zhuoyun NIE
    Science China(Information Sciences), 2018, 61 (07) : 200 - 211
  • [26] Disturbance Rejection Based on Equivalent-Input-Disturbance Approach Using High-Order Filter
    Mei, Qicheng
    She, Jinhua
    Liu, Zhentao
    Xiong, Yonghua
    He, Wangyong
    Li, Danyun
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2021,
  • [27] Disturbance rejection and performance analysis for nonlinear systems based on nonlinear equivalent-input-disturbance approach
    Yin, Xiang
    She, Jinhua
    Wu, Min
    Sato, Daiki
    Hirota, Kaoru
    NONLINEAR DYNAMICS, 2020, 100 (04) : 3497 - 3511
  • [28] Disturbance Rejection based on Equivalent-Input-Disturbance Approach for Nonlinear Time-Delay Systems
    Gao, Fang
    Wu, Min
    She, Jinhua
    Fang, Mingxing
    Du, Youwu
    Wang, Fang
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1984 - 1989
  • [29] Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach
    Ruijuan Liu
    Jinhua She
    Min Wu
    Fenfang Zhu
    Zhuoyun Nie
    Science China Information Sciences, 2018, 61
  • [30] Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach
    Liu, Ruijuan
    She, Jinhua
    Wu, Min
    Zhu, Fenfang
    Nie, Zhuoyun
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (07)