Multi-scale nested UNet with transformer for colorectal polyp segmentation

被引:5
|
作者
Wang, Zenan [1 ]
Liu, Zhen [1 ]
Yu, Jianfeng [1 ]
Gao, Yingxin [1 ]
Liu, Ming [2 ]
机构
[1] Capital Med Univ, Beijing Chaoyang Hosp, Dept Gastroenterol, Clin Med Coll 3, Beijing, Peoples R China
[2] Hunan Key Lab Nonferrous Resources & Geol Hazard E, Changsha, Peoples R China
来源
关键词
colorectal polyp; deep learning; polyp segmentation; transformer; MISS RATE; COLONOSCOPY;
D O I
10.1002/acm2.14351
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundPolyp detection and localization are essential tasks for colonoscopy. U-shape network based convolutional neural networks have achieved remarkable segmentation performance for biomedical images, but lack of long-range dependencies modeling limits their receptive fields.PurposeOur goal was to develop and test a novel architecture for polyp segmentation, which takes advantage of learning local information with long-range dependencies modeling.MethodsA novel architecture combining with multi-scale nested UNet structure integrated transformer for polyp segmentation was developed. The proposed network takes advantage of both CNN and transformer to extract distinct feature information. The transformer layer is embedded between the encoder and decoder of a U-shape net to learn explicit global context and long-range semantic information. To address the challenging of variant polyp sizes, a MSFF unit was proposed to fuse features with multiple resolution.ResultsFour public datasets and one in-house dataset were used to train and test the model performance. Ablation study was also conducted to verify each component of the model. For dataset Kvasir-SEG and CVC-ClinicDB, the proposed model achieved mean dice score of 0.942 and 0.950 respectively, which were more accurate than the other methods. To show the generalization of different methods, we processed two cross dataset validations, the proposed model achieved the highest mean dice score. The results demonstrate that the proposed network has powerful learning and generalization capability, significantly improving segmentation accuracy and outperforming state-of-the-art methods.ConclusionsThe proposed model produced more accurate polyp segmentation than current methods on four different public and one in-house datasets. Its capability of polyps segmentation in different sizes shows the potential clinical application
引用
收藏
页数:10
相关论文
共 50 条
  • [31] DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation
    Li, Xiang
    Fu, Chong
    Wang, Qun
    Zhang, Wenchao
    Sham, Chiu-Wing
    Chen, Junxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [32] MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation
    Cai, Yutong
    Wang, Yong
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [33] A multi-scale, multi-task fusion UNet model for accurate breast tumor segmentation
    Dai, Shuo
    Liu, Xueyan
    Wei, Wei
    Yin, Xiaoping
    Qiao, Lishan
    Wang, Jianing
    Zhang, Yu
    Hou, Yan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 258
  • [34] MSCA-UNet: multi-scale channel attention-based UNet for segmentation of medical ultrasound images
    Chen, Zihan
    Zhu, Haijiang
    Liu, Yutong
    Gao, Xiaoyu
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6787 - 6804
  • [35] A Nested UNet Based on Multi-Scale Feature Extraction for Mixed Gaussian-Impulse Removal
    Jiang, Jielin
    Liu, Li
    Cui, Yan
    Zhao, Yingnan
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [36] MFBGR: Multi-scale feature boundary graph reasoning network for polyp segmentation
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [37] ECTransNet: An Automatic Polyp Segmentation Network Based on Multi-scale Edge Complementary
    Weikang Liu
    Zhigang Li
    Chunyang Li
    Hongyan Gao
    Journal of Digital Imaging, 2023, 36 : 2427 - 2440
  • [38] UNet segmentation network of COVID-19 CT images with multi-scale attention
    Chen, Mingju
    Yi, Sihang
    Yang, Mei
    Yang, Zhiwen
    Zhang, Xingyue
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 16762 - 16785
  • [39] ECTransNet: An Automatic Polyp Segmentation Network Based on Multi-scale Edge Complementary
    Liu, Weikang
    Li, Zhigang
    Li, Chunyang
    Gao, Hongyan
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (06) : 2427 - 2440
  • [40] Multi-scale information sharing and selection network with boundary attention for polyp segmentation
    Kang, Xiaolu
    Ma, Zhuoqi
    Liu, Kang
    Li, Yunan
    Miao, Qiguang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139