Molecular design of two-dimensional graphdiyne membrane for selective transport of CO2 and H2 over CH4, N2, and CO

被引:6
|
作者
Liu, Quan [1 ]
Chen, Minggong [1 ]
Chen, Guining [2 ]
Yao, Xiaoyue [2 ]
Liu, Gongping [2 ]
Xu, Rong [3 ]
Jin, Wanqin [2 ]
机构
[1] Anhui Univ Sci & Technol, Analyt & Testing Ctr, Sch Chem Engn, Huainan 232001, Peoples R China
[2] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, 30 Puzhu Rd S, Nanjing 211816, Peoples R China
[3] Changzhou Univ, Sch Petrochem Engn, Key Lab Adv Catalyt Mat & Technol, Gehu Rd, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphdiyne; Membrane separation; CO2; capture; H2; purification; Molecular simulation; SEPARATION PERFORMANCE;
D O I
10.1016/j.memsci.2023.121557
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
CO2 capture and H2 purification are the main challenges in syngas and flue gas processing. Two-dimensional graphdiyne (GDY) membrane, with intrinsic uniform pores, provides a promising candidate but lacks both a design strategy and an atomic understanding for these separations. In this study, for the first time, flexible GDYs are computationally designed with the engineering of various functional groups, namely GDY-H, GDY-F, GDY-OH and GDY-NH2, to gain molecular-level insights into CO2 capture and H2 purification from binary mixtures of CO2/CH4, CO2/CO, CO2/N2, H2/CH4, H2/CO and H2/N2. Gas separation performance is enhanced by the co-effect of size sieving and membrane-gas interactions. Both the hydroxylated GDY-OH and the aminated GDY-NH2 membranes exhibit unprecedented performance for both CO2 and H2 separation. Despite processing a small-sized aperture, the GDY-NH2 achieves the highest performance for CO2 separations with permeance above 8.9 x 104 GPU and selectivities over CH4, CO and N2 up to 13935, 12356 and 809, respectively, which far surpass the 2008 upper bound. Structural and energetic analyses show that the flexible GDY-NH2 tends to open its nanowindows and evoke concerted motions that enhance gas permeation, thereby promoting prompt diffusion. Additionally, the ultra-high H2 separation performance of the functional GDY-NH2 and GDY-OH is also several orders of magnitude higher than state-of-the-art membranes. This computational study reveals two dominant effects that govern the gas permeation process and suggests the great potential of hydroxylated and aminated GDYs for both CO2 capture and H2 purification.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Selective capture of CO2 over N2 and CH4: B clusters and their size effects
    Santos-Putungan, Alexandra B.
    Stojic, Natasa
    Binggeli, Nadia
    Paraan, Francis N. C.
    MATERIALS TODAY COMMUNICATIONS, 2020, 22
  • [32] Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks
    Wang, Hui
    Cao, Dapeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (11): : 6324 - 6330
  • [33] Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution
    Shang, Rongxue
    Zhuang, Zixuan
    Yang, Yue
    Li, Gang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (75) : 32315 - 32329
  • [34] On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes
    Cecopieri-Gomez, Martha L.
    Palacios-Alquisira, Joaquin
    Dominguez, J. M.
    JOURNAL OF MEMBRANE SCIENCE, 2007, 293 (1-2) : 53 - 65
  • [35] Adsorption of H2, CO2, CH4, CO, N2 and H2O in Activated Carbon and Zeolite for Hydrogen Production
    Lopes, Filipe V. S.
    Grande, Carlos A.
    Ribeiro, Ana M.
    Loureiro, Jose M.
    Evaggelos, Oikonomopoulos
    Nikolakis, Vladimiros
    Rodrigues, Alirio E.
    SEPARATION SCIENCE AND TECHNOLOGY, 2009, 44 (05) : 1045 - 1073
  • [36] Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres
    Zhang, Huiyan
    Xiao, Rui
    Wang, Denghui
    He, Guangying
    Shao, Shanshan
    Zhang, Jubing
    Zhong, Zhaoping
    BIORESOURCE TECHNOLOGY, 2011, 102 (05) : 4258 - 4264
  • [37] Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the maxwell-stefan equations
    Li, Shiguang
    Falconer, John L.
    Noble, Richard D.
    Krishna, R.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (12) : 3904 - 3911
  • [38] Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO
    Teramura, K
    Tanaka, T
    Ishikawa, H
    Kohno, Y
    Funabiki, T
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (01): : 346 - 354
  • [39] The sorption dynamics of N2, CO2, CO and CH4 in zeolite and carbon molecular sieves
    Onyestyak, Gyoergy
    Oetvoes, Zsolt
    Valyon, Jozsef
    ZEOLITES AND RELATED MATERIALS: TRENDS, TARGETS AND CHALLENGES, PROCEEDINGS OF THE 4TH INTERNATIONAL FEZA CONFERENCE, 2008, 174 : 595 - 598
  • [40] Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in Novel Activated Carbon Beads: Preparation, Measurements and Simulation
    Shao, Xiaohong
    Feng, Zhenhe
    Xue, Ruisheng
    Ma, Congcong
    Wang, Wenchuan
    Peng, Xuan
    Cao, Dapeng
    AICHE JOURNAL, 2011, 57 (11) : 3042 - 3051