The Roles of Ni and Mn in the Thermal Stability of Lithium-Rich Manganese-Rich Oxide Cathode

被引:14
|
作者
Pan, Hongyi [1 ,2 ]
Jiao, Sichen [1 ,2 ]
Xue, Zhichen [3 ]
Zhang, Jin [3 ,4 ]
Xu, Xilin [1 ,2 ]
Gan, Luyu [1 ,2 ]
Li, Quan [1 ]
Liu, Yijin [3 ]
Yu, Xiqian [1 ,2 ]
Li, Hong [1 ,2 ]
Chen, Liquan [1 ,2 ]
Huang, Xuejie [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing Frontier Res Ctr Clean Energy, Inst Phys,Huairou Div, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; lithium-rich manganese-rich oxide; solid-state batteries; thermal stability; transmission X-ray microscopy; XANES; X-RAY-DIFFRACTION; POLY(ETHYLENE OXIDE); SOLID ELECTROLYTES; OXYGEN REDOX; MICROSCOPY; KINETICS;
D O I
10.1002/aenm.202203989
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pursuit of high-energy-density lithium-ion batteries (LIBs) has brought extensive research on the high-capacity lithium-rich manganese-rich oxide cathode (LRMO). However, practical applications of LRMO require a comprehensive understanding of its thermal stability, which determines the boundary for the safe use of LIBs. Here, systematic investigations of the thermal stability of LRMO are carried out by using in situ X-ray diffraction and full-field transmission X-ray microscopy combined with X-ray absorption near edge structure. The roles of Ni and Mn in affecting the thermal stability of LRMO are uncovered. It is surprising that Ni, despite being in the minority, acts as a key factor that governs the onset temperature of thermal decomposition. Unlike in lithium nickel-cobalt-manganese oxide cathodes where a higher content of Mn is believed to stabilize the structure with reduced heat release, in LRMO it causes more heat release which can be attributed to the lithium excess environment around Mn. In addition, it is revealed that the incomplete coverage of solid polymer electrolytes over the LRMO particle surface may lead to the deterioration of thermal stability. These findings provide mechanistic insights into the thermal behavior of LRMO cathodes for developing high-capacity cathodes with improved safety, particularly, for future applications in solid-state batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries
    Kang, Yuqiong
    Guo, Xingang
    Guo, Zhiwu
    Li, Jiangang
    Zhou, Yunan
    Liang, Zheng
    Han, Cuiping
    He, Xiangming
    Zhao, Yun
    Tavajohi, Naser
    Li, Baohua
    JOURNAL OF ENERGY CHEMISTRY, 2021, 62 : 538 - 545
  • [32] Modification of Lithium-Rich Manganese Oxide Materials: Coating, Doping and Single Crystallization
    Li, Hui
    Zhang, Huijuan
    Liang, Ying
    Chen, Rong
    Cao, Yuliang
    BATTERIES & SUPERCAPS, 2025, 8 (03)
  • [33] Synthesis of Lithium and Manganese-Rich Cathode Materials via an Oxalate Co-Precipitation Method
    Wang, Dapeng
    Belharouak, Ilias
    Zhou, Guangwen
    Amine, Khalil
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (05) : A3108 - A3112
  • [34] Enhanced cathode materials for advanced lithium-ion batteries using nickel-rich and lithium/manganese-rich LiNixMnyCozO2
    Jeevanantham, B.
    Shobana, M. K.
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [35] Challenges and Solutions of Lithium-Rich Manganese-Based Cathode Materials for Lithium-Ion Batteries
    Yu W.
    Zhao L.
    Wang Y.
    Liu X.
    Li H.
    Wu A.
    Huang H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (11): : 3040 - 3060
  • [36] Effect of Titanium Doping of Lithium-Rich Cathode Materials
    Pechen, L. S.
    Makhonina, E., V
    Medvedeva, A. E.
    Politov, Yu A.
    Eremenko, I. L.
    DOKLADY PHYSICAL CHEMISTRY, 2022, 502 (01) : 7 - 10
  • [37] Trace level doping of lithium-rich cathode materials
    Lengyel, Miklos
    Shen, Kuan-Yu
    Lanigan, Deanna M.
    Martin, Jonathan M.
    Zhang, Xiaofeng
    Axelbaum, Richard L.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (09) : 3538 - 3545
  • [38] STUDY OF MANGANESE-RICH END OF MN-SN SYSTEM
    SINGH, UP
    PAL, AK
    CHANDRAS.L
    GUPTA, KP
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1968, 242 (08): : 1661 - &
  • [39] Porous layered lithium-rich oxide nanorods: Synthesis and performances as cathode of lithium ion battery
    Chen, Dongrui
    Yu, Qipeng
    Xiang, Xingde
    Chen, Min
    Chen, Zhiting
    Song, Shuai
    Xiong, Lianwen
    Liao, Youhao
    Xing, Lidan
    Li, Weishan
    ELECTROCHIMICA ACTA, 2015, 154 : 83 - 93
  • [40] Effect of Titanium Doping of Lithium-Rich Cathode Materials
    L. S. Pechen
    E. V. Makhonina
    A. E. Medvedeva
    Yu. A. Politov
    I. L. Eremenko
    Doklady Physical Chemistry, 2022, 502 : 7 - 10