collider bias;
inverse probability weighting;
linear models;
directed acyclic graph;
post-outcome collider bias;
SELECTION BIAS;
CAUSAL;
D O I:
10.1177/00491241211043131
中图分类号:
O1 [数学];
C [社会科学总论];
学科分类号:
03 ;
0303 ;
0701 ;
070101 ;
摘要:
We consider the problem of bias arising from conditioning on a post-outcome collider. We illustrate this with reference to Elwert and Winship (2014) but we go beyond their study to investigate the extent to which inverse probability weighting might offer solutions. We use linear models to derive expressions for the bias arising in different kinds of post-outcome confounding, and we show the specific situations in which inverse probability weighting will allow us to obtain estimates that are consistent or, if not consistent, less biased than those obtained via ordinary least squares regression.
机构:
Univ Paris 06, Fac Med St Antoine, UMR S 707, F-75012 Paris, France
INSERM, U707, Paris, FranceUniv Paris 06, Fac Med St Antoine, UMR S 707, F-75012 Paris, France
Chaix, Basile
Evans, David
论文数: 0引用数: 0
h-index: 0
机构:
INSERM, U707, Paris, France
EHESP Sch Publ Hlth, Rennes, FranceUniv Paris 06, Fac Med St Antoine, UMR S 707, F-75012 Paris, France
Evans, David
Merlo, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Lund Univ, Unit Social Epidemiol, CRC, Fac Med, Malmo, SwedenUniv Paris 06, Fac Med St Antoine, UMR S 707, F-75012 Paris, France
Merlo, Juan
Suzuki, Etsuji
论文数: 0引用数: 0
h-index: 0
机构:
Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Epidemiol, Okayama 7008530, JapanUniv Paris 06, Fac Med St Antoine, UMR S 707, F-75012 Paris, France