Using Inverse Probability Weighting to Address Post-Outcome Collider Bias

被引:4
|
作者
Breen, Richard [1 ,2 ]
Ermisch, John [2 ,3 ]
机构
[1] Univ Oxford, Dept Sociol, Oxford, England
[2] Univ Oxford, Nuffield Coll, Oxford, England
[3] Univ Oxford, Leverhulme Ctr Demog Sci, Oxford, England
关键词
collider bias; inverse probability weighting; linear models; directed acyclic graph; post-outcome collider bias; SELECTION BIAS; CAUSAL;
D O I
10.1177/00491241211043131
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We consider the problem of bias arising from conditioning on a post-outcome collider. We illustrate this with reference to Elwert and Winship (2014) but we go beyond their study to investigate the extent to which inverse probability weighting might offer solutions. We use linear models to derive expressions for the bias arising in different kinds of post-outcome confounding, and we show the specific situations in which inverse probability weighting will allow us to obtain estimates that are consistent or, if not consistent, less biased than those obtained via ordinary least squares regression.
引用
收藏
页码:5 / 27
页数:23
相关论文
共 50 条
  • [1] Investigation of selection bias using inverse probability weighting
    Sheikh, Kazim
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2007, 22 (05) : 349 - 350
  • [2] Investigation of selection bias using inverse probability weighting
    Kazim Sheikh
    European Journal of Epidemiology, 2007, 22 : 349 - 350
  • [3] Using Inverse Probability Weighting to Correct for Outcome Misclassification
    Gravel, Christopher A.
    Filion, Kristian B.
    Reynier, Pauline M.
    Platt, Robert W.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 461 - 462
  • [4] Inverse probability weighting is an effective method to address selection bias during the analysis of high dimensional data
    Carry, Patrick M.
    Vanderlinden, Lauren A.
    Dong, Fran
    Buckner, Teresa
    Litkowski, Elizabeth
    Vigers, Timothy
    Norris, Jill M.
    Kechris, Katerina
    GENETIC EPIDEMIOLOGY, 2021, 45 (06) : 593 - 603
  • [5] Inverse probability weighting (IPW) for evaluating and "correcting" selection bias
    Narduzzi, Silvia
    Golini, Martina Nicole
    Porta, Daniela
    Stafoggia, Massimo
    Forastiere, Francesco
    EPIDEMIOLOGIA & PREVENZIONE, 2014, 38 (05): : 335 - 341
  • [6] Predictors of follow-up and assessment of selection bias using inverse probability weighting
    Miguel, A.
    Alonso, A.
    Segui-Gomez, M. D.
    de Irala, J.
    Bes-Rastrollo, M.
    Sanchez-Villegas, A.
    Martinez-Gonzalez, M. A.
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2006, 21 : 131 - 131
  • [7] Robust Inference Using Inverse Probability Weighting
    Ma, Xinwei
    Wang, Jingshen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 1851 - 1860
  • [8] Variable selection using inverse probability of censoring weighting
    Kojima, Masahiro
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (11) : 2184 - 2206
  • [9] Using post-outcome measurement information in censoring-by-death problems
    Yang, Fan
    Small, Dylan S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 299 - 318
  • [10] Model misspecification and bias for inverse probability weighting estimators of average causal effects
    Waernbaum, Ingeborg
    Pazzagli, Laura
    BIOMETRICAL JOURNAL, 2023, 65 (02)