AGB estimation using Sentinel-2 and Sentinel-1 datasets

被引:0
|
作者
Qasim, Mohammad [1 ]
Csaplovics, Elmar [1 ]
机构
[1] Tech Univ Dresden, Fac Environm Sci, Chair Remote Sensing, Helmholtz Str 10, D-01069 Dresden, Germany
关键词
Forests; AGB; Remote Sensing; Machine Learning; ABOVEGROUND BIOMASS ESTIMATION; SUPPORT VECTOR MACHINES; LEAF-AREA INDEX; LAND-COVER CLASSIFICATION; SYNTHETIC-APERTURE RADAR; GROWING STOCK VOLUME; FOREST BIOMASS; TROPICAL FOREST; CARBON STOCKS; IMAGE CLASSIFICATION;
D O I
10.1007/s10661-024-12478-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change is one of the greatest threats recently, of which developing countries are facing most of the brunt. In the fight against climate change, forests can play an important role, since they hold a substantial amount of terrestrial carbon and can therefore affect the global carbon cycle. Deforestation, however, is a significant challenge. There are financial incentives that can help in halting deforestation by compensating developing countries for their efforts. They require however assessments which makes it essential for developing countries to regularly monitor their stocking. Based on the aforementioned, forest carbon stock assessment was conducted in Margalla Hills National Park i.e., Sub-tropical Chir Pine Forest (SCPF) and Sub-tropical Broadleaved Evergreen Forest (SBEF), in Pakistan combining field inventory with a remote-sensing-based approach using machine learning algorithms. Circular plots of a 20 m radius were used for recording the data and Sentinel-2 (S2) and Sentinel-1 (S1) satellite data were used for estimating the Aboveground Biomass (AGB). The performances of Random Forests (RF) and Support Vector Machine (SVM) were explored. The AGB was higher for the SCPF. The RF performed better for SCPF, but SVM was better for SBEF. The free available satellite data in the form of S2 and S1 data offers an advantage for AGB estimations. The combination of S2 and S1 for future AGB studies in Pakistan is also recommended.
引用
收藏
页数:33
相关论文
共 50 条
  • [31] Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation
    Nuthammachot, Narissara
    Askar, Askar
    Stratoulias, Dimitris
    Wicaksono, Pramaditya
    GEOCARTO INTERNATIONAL, 2022, 37 (02) : 366 - 376
  • [32] Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data
    Wang, Ziyu
    Wu, Wei
    Liu, Hongbin
    REMOTE SENSING, 2024, 16 (17)
  • [33] META-LEARNING FOR WETLAND CLASSIFICATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 IMAGERY
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 47 - 52
  • [34] Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    REMOTE SENSING, 2022, 14 (05)
  • [35] Irrigation Detection Using Sentinel-1 and Sentinel-2 Time Series on Fruit Tree Orchards
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2024, 16 (03)
  • [36] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [37] Seasonal monitoring of biochemical variables in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4737 - 4763
  • [38] Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data
    Elwan, Ehsan
    Le Page, Michel
    Jarlan, Lionel
    Baghdadi, Nicolas
    Brocca, Luca
    Modanesi, Sara
    Dari, Jacopo
    Quintana Segui, Pere
    Zribi, Mehrez
    WATER, 2022, 14 (05)
  • [39] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089
  • [40] Mapping dead understorey Buxus hyrcana Pojark using Sentinel-2 and Sentinel-1 data
    Saba, Fatemeh
    Latifi, Hooman
    Zoej, Mohammad Javad Valadan
    Esmaili, Rohollah
    FORESTRY, 2023, 96 (02): : 228 - 248