Tensor Train Optimization of Parameterized Quantum Circuits

被引:0
|
作者
Paradezhenko, G. [1 ]
Pervishko, A. [1 ,2 ]
Yudin, D. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[2] Far Eastern Fed Univ, Inst High Technol & Adv Mat, Lab Spin Orbitron, Vladivostok 690950, Russia
关键词
MATRIX PRODUCT STATES; RENORMALIZATION-GROUP; BARREN PLATEAUS; NETWORKS;
D O I
10.1134/S0021364023603056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine a particular realization of derivative-free method as implemented on tensor train based optimization to the variational quantum eigensolver. As an example, we consider parameterized quantum circuits composed of a low-depth hardware-efficient ansatz and Hamiltonian variational ansatz for addressing the ground state of the transverse field Ising model. We further make a comparison with gradient-based optimization techniques and discuss on the advantage of using tensor train based optimization, especially in the presence of noise.
引用
收藏
页码:938 / 945
页数:8
相关论文
共 50 条
  • [21] Probabilistic tensor optimization of quantum circuits for the max-k-cut problem
    Paradezhenko, G. V.
    Pervishko, A. A.
    Yudin, D.
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [22] THE ALTERNATING LINEAR SCHEME FOR TENSOR OPTIMIZATION IN THE TENSOR TRAIN FORMAT
    Holtz, Sebastian
    Rohwedder, Thorsten
    Schneider, Reinhold
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A683 - A713
  • [23] An efficient quantum algorithm for the time evolution of parameterized circuits
    Barison, Stefano
    Vicentini, Filippo
    Carleo, Giuseppe
    QUANTUM, 2021, 5
  • [24] Mode connectivity in the loss landscape of parameterized quantum circuits
    Hamilton, Kathleen E.
    Lynn, Emily
    Pooser, Raphael C.
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)
  • [25]   Mode connectivity in the loss landscape of parameterized quantum circuits
    Kathleen E. Hamilton
    Emily Lynn
    Raphael C. Pooser
    Quantum Machine Intelligence, 2022, 4
  • [26] Tight and Efficient Gradient Bounds for Parameterized Quantum Circuits
    Letcher, Alistair
    Woerner, Stefan
    Zoufal, Christa
    QUANTUM, 2024, 8
  • [27] Diffusion-inspired quantum noise mitigation in parameterized quantum circuits
    Hoang-Quan Nguyen
    Xuan Bac Nguyen
    Samuel Yen-Chi Chen
    Hugh Churchill
    Nicholas Borys
    Samee U. Khan
    Khoa Luu
    Quantum Machine Intelligence, 2025, 7 (1)
  • [28] A quantum algorithm for linear differential equations with layerwise parameterized quantum circuits
    Xiao, Junxiang
    Wen, Jingwei
    Zhou, Zengrong
    Qian, Ling
    Huang, Zhiguo
    Wei, Shijie
    Long, Guilu
    AAPPS BULLETIN, 2024, 34 (01):
  • [29] Interpreting variational quantum models with active paths in parameterized quantum circuits
    Lee, Kyungmin
    Jeon, Hyungjun
    Lee, Dongkyu
    Kim, Bongsang
    Bang, Jeongho
    Kim, Taehyun
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [30] Tensor train for global optimization problems in robotics
    Shetty, Suhan
    Lembono, Teguh
    Low, Tobias
    Calinon, Sylvain
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (06): : 811 - 839