Accelerating heat exchanger design by combining physics-informed deep learning and transfer learning

被引:12
|
作者
Wu, Zhiyong [1 ,3 ]
Zhang, Bingjian [1 ,3 ]
Yu, Haoshui [4 ]
Ren, Jingzheng [5 ]
Pan, Ming [6 ]
He, Chang [2 ,3 ]
Chen, Qinglin [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[3] Guangdong Engn Ctr Petrochem Energy Conservat, Key Lab Low Carbon Chem & Energy Conservat Guangdo, Guangzhou 510275, Peoples R China
[4] Aalborg Univ, Dept Chem & Biosci, Niels Bohrs Vej 8A, DK-6700 Esbjerg, Denmark
[5] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China
[6] Ind Data Sci & Technol Guangzhou Co Ltd, Guangzhou 510530, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics-informed deep learning; Space decomposition; Transfer learning; Fourier network; Stochastic optimization; Geometric design; OPTIMAL LINEAR-APPROACH; NEURAL-NETWORKS; OPTIMIZATION; ALGORITHM; FRAMEWORK; FLOW;
D O I
10.1016/j.ces.2023.119285
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Recently developed physics-informed deep learning is regarded as a transformative learning philosophy that has been applied in many scientific domains, but such applications are often limited to simulating relatively simple equations and well-defined physics. Here, we propose a systematic framework that can leverage the capabilities of space decomposition, physics-informed deep learning, and transfer learning to accelerate the multi-objective stochastic optimization of a heat exchanger system. In particular, this method seamlessly integrates the strengths of the modified Fourier network for capturing steep gradient variation, the point density adjustment strategy to identify the appropriate size of residual points, as well as the accelerated linear algebra to allow for kernel fusion and just-in-time compilation that enables an acceptable computational expense. The performance is verified by discovering the best-performing geometric design and the corresponding optimal operating conditions of an air cooler system under uncertainty.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A physics-informed deep learning method for solving direct and inverse heat conduction problems of materials
    He, Zhili
    Ni, Futao
    Wang, Weiguo
    Zhang, Jian
    MATERIALS TODAY COMMUNICATIONS, 2021, 28 (28):
  • [42] A Physics-Informed Deep Learning Model and Its Application in Heat Dissipation for Hot Section Components
    Zhou W.-W.
    Wang Q.
    Yang L.
    Huang K.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (10):
  • [43] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [44] FORWARD AND INVERSE PROBLEMS OF THIN PLATE MECHANICS BASED ON PHYSICS-INFORMED DEEP TRANSFER LEARNING FOR
    Tang H.-S.
    He Z.-P.
    Liao Y.-Y.
    Xie L.-Y.
    Gongcheng Lixue/Engineering Mechanics, 2023, 40 (08): : 1 - 10
  • [45] A physics-informed deep learning closure for Lagrangian velocity gradient evolution
    Liu, Bo
    Wan, Zhen-Hua
    Lu, Xi-Yun
    Liu, Luo-Qin
    PHYSICS OF FLUIDS, 2023, 35 (11)
  • [46] Physics-Informed Deep Learning Inversion with Application to Noisy Magnetotelluric Measurements
    Liu, Wei
    Wang, He
    Xi, Zhenzhu
    Wang, Liang
    REMOTE SENSING, 2024, 16 (01)
  • [47] Physics-informed deep learning model in wind turbine response prediction
    Li, Xuan
    Zhang, Wei
    RENEWABLE ENERGY, 2022, 185 : 932 - 944
  • [48] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [49] Unsupervised physics-informed deep learning for assessing pulmonary artery hemodynamics
    Liu, Xiujian
    Xie, Baihong
    Zhang, Dong
    Zhang, Heye
    Gao, Zhifan
    de Albuquerque, Victor Hugo C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [50] Multi-Objective Loss Balancing for Physics-Informed Deep Learning
    Bischof, Rafael
    Kraus, Michael A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 439