Estimation of slope stability using ensemble-based hybrid machine learning approaches

被引:0
|
作者
Ragam, Prashanth [1 ]
Kumar, N. Kushal [1 ]
Ajith, Jubilson E. [1 ]
Karthik, Guntha [2 ]
Himanshu, Vivek Kumar [3 ]
Machupalli, Divya Sree [1 ]
Murlidhar, Bhatawdekar Ramesh [4 ,5 ]
机构
[1] VIT AP Univ, Sch Comp Sci & Engn, Amaravati, Andhra Pradesh, India
[2] Stanley Coll Engn & Technol Women Autonomous, Dept Elect & Commun Engn, Hyderabad, Telangana, India
[3] CSIR Cent Inst Min & Fuel Res, Dhanbad, India
[4] Univ Teknol Malaysia, Fac Engn, Ctr Trop Geoengn Geotrop, Sch Civil Engn, Skudai, Johor, Malaysia
[5] Indian Inst Technol, Dept Min Engn, Kharagpur, India
关键词
slope stability; factor of safety (FOS); slope failure; XGBoost; XGBoost-RF; R-2; RMSE; NEURAL-NETWORKS; ROCK SLOPES; PREDICTION; FAILURE; MODELS;
D O I
10.3389/fmats.2024.1330609
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mining is one of the most daunting occupations gain the sector since it entails risk at any point in the operation. In its operation, the main focus is on slope stability. To avoid slope failures, work should be performed in line with both the regulations and the safety criteria. Slope stability is essential in mining activities owing to slope failure putting productivity and safety at risk. Prediction of slope failure is difficult because of the complexity of traditional engineering techniques. Through study, recent technologies have helped mining companies predict slope problems quickly and effectively. In this current research, an ensemble of machine learning intelligence algorithms was used to estimate and assess the Factor of Safety (FOS). In Ostapal Chromicte Mine, India, 79 experimental and failure slope occurrences were tracked to gather in-the-moment field data. The available data were split into training and testing sets at random to build algorithms. The five influenced factors such as the unit weight, the friction angle, the cohesiveness, the mining depth, as well as the slope angle used as input variables to estimate the FOS. Selected machine learning techniques such as Multiple Linear Regression (MLR), Decision Tree, Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and ensemble hybrid model combining eXtreme Gradient Boosting and Random Forest (XGBoost-RF) were developed to evaluate the FOS. The validity and efficiency of created models can be evaluated using standard evaluation parameters such as coefficient of determination (R (2)), root mean square error (RMSE), mean square error (MSE), normalized root mean square error (NRMSE), mean absolute percentage error (MAPE) and mean absolute deviation (MAD). The most precise model to assess the FOS across all models was discovered to be the XGBOOST-RF ensemble model, which had a high R (2) of 0.931, MSE of 0.009, NRMSE of 0.069, MAD of 0.037, MAPE of 3.581 and an RMSE of 0.098.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Prediction of slope stability based on five machine learning techniques approaches: a comparative study
    Soe Hlaing Tun
    Changnv Zeng
    Farhad Jamil
    Multiscale and Multidisciplinary Modeling, Experiments and Design, 2025, 8 (5)
  • [42] Improving Adversarial Attacks with Ensemble-Based Approaches
    Ji, Yapeng
    Zhou, Guoxu
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 15 - 29
  • [43] Ensemble-Based Approaches Ensure Reliability and Reproducibility
    Wan, Shunzhou
    Bhati, Agastya P.
    Wade, Alexander D.
    Coveney, Peter V.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (22) : 6959 - 6963
  • [44] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [45] Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches
    Tikhamarine, Yazid
    Malik, Anurag
    Kumar, Anil
    Souag-Gamane, Doudja
    Kisi, Ozgur
    HYDROLOGICAL SCIENCES JOURNAL, 2019, 64 (15) : 1824 - 1842
  • [46] Ensemble-based machine learning approach for improved leak detection in water mains
    Ravichandran, Thambirajah
    Gavahi, Keyhan
    Ponnambalam, Kumaraswamy
    Burtea, Valentin
    Mousavi, S. Jamshid
    JOURNAL OF HYDROINFORMATICS, 2021, 23 (02) : 307 - 323
  • [47] Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models
    Li, Huajin
    Xu, Qiang
    He, Yusen
    Deng, Jiahao
    LANDSLIDES, 2018, 15 (10) : 2047 - 2059
  • [48] A novel ensemble-based wrapper method for feature selection using extreme learning machine and genetic algorithm
    Xiaowei Xue
    Min Yao
    Zhaohui Wu
    Knowledge and Information Systems, 2018, 57 : 389 - 412
  • [49] An Efficient Ensemble-based Machine Learning approach for Predicting Chronic Kidney Disease
    Chhabra, Divyanshi
    Juneja, Mamta
    Chutani, Gautam
    CURRENT MEDICAL IMAGING, 2024, 20
  • [50] Mapping wildfire ignition probability and predictor sensitivity with ensemble-based machine learning
    Qi Tong
    Thomas Gernay
    Natural Hazards, 2023, 119 (3) : 1551 - 1582