Adaptive Refining-Aggregation-Separation Framework for Unsupervised Domain Adaptation Semantic Segmentation

被引:9
|
作者
Cao, Yihong [1 ,2 ]
Zhang, Hui [2 ]
Lu, Xiao [3 ]
Chen, Yurong [2 ]
Xiao, Zheng [4 ]
Wang, Yaonan [2 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Natl Engn Res Ctr Robot Vis Percept & Control, Sch Robot, Changsha 410082, Hunan, Peoples R China
[3] Hunan Normal Univ, Coll Engn & Design, Changsha 410082, Hunan, Peoples R China
[4] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; semantic segmentation; feature-level adaptation; clustering technique;
D O I
10.1109/TCSVT.2023.3243402
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unsupervised domain adaptation has attracted widespread attention as a promising method to solve the labeling difficulties of semantic segmentation tasks. It trains a segmentation network for unlabeled real target images using easily available labeled virtual source images. To improve performance, clustering is used to obtain domain-invariant feature representations. However, most clustering-based methods indiscriminately cluster all features mapped by category from both domains, causing the centroid shift and affecting the generation of discriminative features. We propose a novel clustering-based method that uses an adaptive refining-aggregation-separation framework, which learns the discriminative features by designing different adaptive schemes for different domains and features. The clustering does not require any tunable thresholds. To estimate more accurate domain-invariant centroids, we design different ways to guide the adaptive refinement of different domain features. A critic is proposed to directly evaluate the confidence of target features to solve the absence of target labels. We introduce a domain-balanced aggregation loss and two adaptive separation losses for distance and similarity respectively, which can discriminate clustering features by combining the refinement strategy to improve segmentation performance. Experimental results on GTA5 -> Cityscapes and SYNTHIA -> Cityscapes benchmarks show that our method outperforms existing state-of-the-art methods.
引用
收藏
页码:3822 / 3832
页数:11
相关论文
共 50 条
  • [31] Prototypical Contrast Adaptation for Domain Adaptive Semantic Segmentation
    Jiang, Zhengkai
    Li, Yuxi
    Yang, Ceyuan
    Gao, Peng
    Wang, Yabiao
    Tai, Ying
    Wang, Chengjie
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 36 - 54
  • [32] CATEGORY-ADAPTIVE DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION
    Wang, Zhiming
    Luo, Yantian
    Huang, Danlan
    Ge, Ning
    Lu, Jianhua
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3773 - 3777
  • [33] Enhanced Prototypical Learning for Unsupervised Domain Adaptation in LiDAR Semantic Segmentation
    Yi, Eojindl
    Yang, JuYoung
    Kim, Junmo
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 7058 - 7064
  • [34] A multi-grained unsupervised domain adaptation approach for semantic segmentation
    Li, Luyang
    Ma, Tai
    Lu, Yue
    Li, Qingli
    He, Lianghua
    Wen, Ying
    PATTERN RECOGNITION, 2023, 144
  • [35] Temporal Consistency as Pretext Task in Unsupervised Domain Adaptation for Semantic Segmentation
    Felipe Barbosa
    Fernando Osório
    Journal of Intelligent & Robotic Systems, 111 (1)
  • [36] Per-class curriculum for Unsupervised Domain Adaptation in semantic segmentation
    Alcover-Couso, Roberto
    Sanmiguel, Juan C.
    Escudero-Vinolo, Marcos
    Carballeira, Pablo
    VISUAL COMPUTER, 2025, 41 (02): : 901 - 919
  • [37] Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered Embeddings
    Toldo, Marco
    Michieli, Umberto
    Zanuttigh, Pietro
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1357 - 1367
  • [38] Unsupervised Domain Adaptation via Shared Content Representation for Semantic Segmentation
    Hubschneider, Christian
    Birkenbach, Marius
    Zoellner, J. Marius
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3102 - 3109
  • [39] Source Data-Free Unsupervised Domain Adaptation for Semantic Segmentation
    Ye, Mucong
    Zhang, Jing
    Ouyang, Jingpeng
    Yuan, Ding
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2233 - 2242
  • [40] DaDA: Distortion-aware Domain Adaptation for Unsupervised Semantic Segmentation
    Jang, Sujin
    Na, Joohan
    Oh, Dokwan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,